IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5489-d1102753.html
   My bibliography  Save this article

Differentiated Control of Large Spatial Environments: Air Curtain Grid System

Author

Listed:
  • Linye Song

    (College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Kaijun Li

    (College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xinghui Zhang

    (College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Jing Hua

    (College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Cong Zhang

    (College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

Large public buildings (LPBs) are the main energy consumers in cities, and the air conditioning system contributes a large part. Supply air allocation by partition can avoid excessive regulation of the system. In spatially interconnected LPBs, thermal coupling relationships exist between different subzones. The convective heat transfer to the non-occupied zone increases the actual cooling/heating capacity of the air conditioning area. This paper applies the air curtain as an airflow barrier indoors, and the air curtain grid system (ACGS) is created by the combined operation of multiple air curtains, which aims to reduce the convective heat exchange between adjacent subzones. The computational fluid dynamics (CFD) model is established and simulated. The main conclusions are as follows: (1) For the scenarios addressed in this paper, the combination of a 60° diffuser air supply angle and 2 m/s air curtain velocity can reduce the convective load from the adjacent space by more than 50%. (2) It is recommended to install incomplete air curtains indoors, and a 50% air curtain coverage ratio can reduce 52% of the heat exchange. (3) The mathematical model of air infiltration/exfiltration under the combined operation of multiple air curtains is established and verified in ACGS. This paper provides a new approach to the air conditioning partition control of LPBs.

Suggested Citation

  • Linye Song & Kaijun Li & Xinghui Zhang & Jing Hua & Cong Zhang, 2023. "Differentiated Control of Large Spatial Environments: Air Curtain Grid System," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5489-:d:1102753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Yanyu & Dong, Jiankai & Liu, Jing, 2020. "Zonal modelling for thermal and energy performance of large space buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenzhong Guan & Xiang Xu & Yibing Xue & Chongjie Wang, 2022. "Multi-Objective Optimization Design of Geometric Parameters of Atrium in nZEB Based on Energy Consumption, Carbon Emission and Cost," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    2. Frank Florez & Jesús Alejandro Alzate-Grisales & Pedro Fernández de Córdoba & John Alexander Taborda-Giraldo, 2023. "Methodology for Modeling Multiple Non-Homogeneous Thermal Zones Using Lumped Parameters Technique and Graph Theory," Energies, MDPI, vol. 16(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5489-:d:1102753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.