IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5306-d1099501.html
   My bibliography  Save this article

Solution Procedure for Fractional Casson Fluid Model Considered with Heat Generation and Chemical Reaction

Author

Listed:
  • Ndolane Sene

    (Section Mathematics and Statistics, Institut des Politiques Publiques, Cheikh Anta Diop University, Dakar 5005, Senegal)

Abstract

In this work, the objective is to get the exact analytical solution of a generalized Casson fluid model with heat generation and chemical reaction described by the Caputo fractional operator, using the approach that the Laplace transform method includes the Laplace transform of the Caputo derivative. After the exact solution, it will be studied the impact of the order of the fractional derivative and the most essential parameters included in the modeling like the Prandtl number, the thermal Grashof number, the mass Grashof number, the Schmidt number, the heat generation parameter, and the chemical reaction parameter. The physical points of view of the influence will be discussed and analyzed. The findings of the paper will be illustrated by several graphics. The development in industry and engineering science, it makes important to study the flow behavior of non-Newtonian fluids. The domains of applications of the flow behavior of non-Newtonian fluids are diverse such as geophysics, biorheology, and chemical and petroleum industries.

Suggested Citation

  • Ndolane Sene, 2023. "Solution Procedure for Fractional Casson Fluid Model Considered with Heat Generation and Chemical Reaction," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5306-:d:1099501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5306/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ndolane Sene & Saima Arshed, 2022. "Fractional Model and Exact Solutions of Convection Flow of an Incompressible Viscous Fluid under the Newtonian Heating and Mass Diffusion," Journal of Mathematics, Hindawi, vol. 2022, pages 1-20, January.
    2. Qureshi, Sania & Yusuf, Abdullahi & Shaikh, Asif Ali & Inc, Mustafa, 2019. "Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Mehmet Yavuz & Ndolane Sene & Mustafa Yıldız, 2022. "Analysis of the Influences of Parameters in the Fractional Second-Grade Fluid Dynamics," Mathematics, MDPI, vol. 10(7), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenchang He & Yuhang Jin & Luyao Wang & Ning Cai & Jia Mu, 2024. "Existence and Stability for Fractional Differential Equations with a ψ –Hilfer Fractional Derivative in the Caputo Sense," Mathematics, MDPI, vol. 12(20), pages 1-12, October.
    2. J. Kayalvizhi & A. G. Vijaya Kumar & Hakan F. Öztop & Ndolane Sene & Nidal H. Abu-Hamdeh, 2022. "Heat Transfer Enhancement through Thermodynamical Activity of H 2 O/Clay Nanofluid Flow over an Infinite Upright Plate with Caputo Fractional-Order Derivative," Energies, MDPI, vol. 15(16), pages 1-18, August.
    3. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    4. Shah, Syed Azhar Ali & Khan, Muhammad Altaf & Farooq, Muhammad & Ullah, Saif & Alzahrani, Ebraheem O., 2020. "A fractional order model for Hepatitis B virus with treatment via Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    5. Mustapha, Umar Tasiu & Qureshi, Sania & Yusuf, Abdullahi & Hincal, Evren, 2020. "Fractional modeling for the spread of Hookworm infection under Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    6. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    7. Qureshi, Sania, 2020. "Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    8. Agarwal, Praveen & Singh, Ram & Rehman, Attiq ul, 2021. "Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via Adam–Bashforth–Moulton predictor-corrector scheme," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Qureshi, Sania, 2020. "Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 151-165.
    10. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Oxygen-plankton model under the effect of global warming with nonsingular fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    11. Acay, Bahar & Inc, Mustafa & Mustapha, Umar Tasiu & Yusuf, Abdullahi, 2021. "Fractional dynamics and analysis for a lana fever infectious ailment with Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    12. Mehmet Yavuz & Ndolane Sene & Mustafa Yıldız, 2022. "Analysis of the Influences of Parameters in the Fractional Second-Grade Fluid Dynamics," Mathematics, MDPI, vol. 10(7), pages 1-17, April.
    13. Yusuf, Abdullahi & Qureshi, Sania & Feroz Shah, Syed, 2020. "Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5306-:d:1099501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.