IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5253-d1098597.html
   My bibliography  Save this article

Analysis of the Nonlinear and Spatial Spillover Effects of the Digital Economy on Carbon Emissions in the Yellow River Basin

Author

Listed:
  • Ruiyuan Dong

    (School of International Business, Shaanxi Normal University, Xi’an 710119, China)

  • Xiaowei Zhou

    (School of International Business, Shaanxi Normal University, Xi’an 710119, China)

Abstract

Low-carbon development of the Yellow River Basin (YRB) is an inherent requirement for implementing ecological protection and high-quality development strategies in the YRB and an important way to achieve China’s carbon peak and neutrality goals. However, utilization of the newly emerging digital economy to reduce carbon emissions in the YRB remains a largely unexplored topic. Based on panel data obtained from 56 cities in the YRB from 2011 to 2019, the nonlinear and spatial spillover effects of the digital economy on carbon emissions were studied using spatial econometric and multiple threshold effect models. The results showed that: (1) The digital economy had an inverted U-shaped relationship with carbon emissions, initially increasing and subsequently decreasing, with a more prominent impact intensity in upstream cities; (2) The digital economy had distinct negative spatial spillover effects on carbon emissions, with more significant effects observed in the midstream and downstream; (3) The digital economy had a nonlinear threshold effect on carbon emissions. When the optimization level of the industrial structure was above a certain threshold, the digital economy reduced carbon emissions. Based on these results, we propose suggestions for accelerating the healthy growth of the digital economy while promoting carbon emission reductions across the YRB.

Suggested Citation

  • Ruiyuan Dong & Xiaowei Zhou, 2023. "Analysis of the Nonlinear and Spatial Spillover Effects of the Digital Economy on Carbon Emissions in the Yellow River Basin," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5253-:d:1098597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    2. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    3. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    4. Xiaoyan Li & Jia Liu & Peijie Ni, 2021. "The Impact of the Digital Economy on CO 2 Emissions: A Theoretical and Empirical Analysis," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
    5. Zhichuan Zhu & Bo Liu & Zhuoxi Yu & Jianhong Cao, 2022. "Effects of the Digital Economy on Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
    6. Jie Zhang & Yunfeng Shang, 2022. "The Influence and Mechanism of Digital Economy on the Development of the Tourism Service Trade—Analysis of the Mediating Effect of Carbon Emissions under the Background of COP26," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    7. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    8. Zhongwu Zhang & Jinyuan Zhang & Liping Liu & Jian Gong & Jinqiang Li & Lei Kang, 2023. "Spatial–Temporal Heterogeneity of Urbanization and Ecosystem Services in the Yellow River Basin," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    9. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    10. Ma, Qiang & Tariq, Muhammad & Mahmood, Haider & Khan, Zeeshan, 2022. "The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development," Technology in Society, Elsevier, vol. 68(C).
    11. Moyer, Jonathan D. & Hughes, Barry B., 2012. "ICTs: Do they contribute to increased carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 919-931.
    12. Xuan Chang & Jinye Li, 2022. "Effects of the Digital Economy on Carbon Emissions in China: A Spatial Durbin Econometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjing Zhang & Bin Sun & Zaijun Li & Suleman Sarwar, 2023. "The Impact of the Digital Economy on Industrial Eco-Efficiency in the Yangtze River Delta (YRD) Urban Agglomeration," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    2. Congqi Wang & Rui Zhang & Haslindar Ibrahim & Pengzhen Liu, 2023. "Can the Digital Economy Enable Carbon Emission Reduction: Analysis of Mechanisms and China’s Experience," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    3. Yihui Chen & Minjie Li, 2024. "How does the digital transformation of agriculture affect carbon emissions? Evidence from China’s provincial panel data," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    4. Yihua Zhang & Xinxin Hong & Yuan Wang, 2023. "Study on the Coupled and Coordinated Development and Evolution of Digital Economy and Green Technology Innovation," Sustainability, MDPI, vol. 15(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Li & Yuan, Ling & Khan, Zeeshan & Badeeb, Ramez Abubakr & Zhang, Leilei, 2023. "How G-7 countries are paving the way for net-zero emissions through energy efficient ecosystem?," Energy Economics, Elsevier, vol. 117(C).
    2. Pingguo Xu & Leyi Chen & Huajuan Dai, 2022. "Pathways to Sustainable Development: Corporate Digital Transformation and Environmental Performance in China," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    3. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    4. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    5. Nan Li & Beibei Shi & Rong Kang, 2023. "Analysis of the Coupling Effect and Space-Time Difference between China’s Digital Economy Development and Carbon Emissions Reduction," IJERPH, MDPI, vol. 20(1), pages 1-25, January.
    6. Zhuoxi Yu & Shan Liu & Zhichuan Zhu, 2022. "Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    7. Zhao Yang, 2023. "Can the Digitalization Reduce Carbon Emission Intensity?—The Moderating Effects of the Fiscal Decentralization," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    8. Liang Liu & Yuhan Zhang & Xiujuan Gong & Mengyue Li & Xue Li & Donglin Ren & Pan Jiang, 2022. "Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    9. Yukun Ma & Shaojian Wang & Chunshan Zhou, 2023. "Can the Development of the Digital Economy Reduce Urban Carbon Emissions? Case Study of Guangdong Province," Land, MDPI, vol. 12(4), pages 1-13, March.
    10. Qiuqiu Guo & Xiaoyu Ma, 2023. "How Does the Digital Economy Affect Sustainable Urban Development? Empirical Evidence from Chinese Cities," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    11. Yingzi Chen & Wanwan Yang & Yaqi Hu, 2022. "Internet Development, Consumption Upgrading and Carbon Emissions—An Empirical Study from China," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    12. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    13. Kaiwen Liu & Hongbing Deng & Ting Wu & Yang Yi & Yao Zhang & Yunlong Ren, 2023. "Technological Innovation, Urban Spatial Structure, and Haze Pollution: Empirical Evidence from the Middle Reaches of the Yangtze River Urban Agglomeration," Energies, MDPI, vol. 16(18), pages 1-25, September.
    14. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    15. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    16. Zhenhua Xu & Fuyi Ci, 2023. "Spatial-Temporal Characteristics and Driving Factors of Coupling Coordination between the Digital Economy and Low-Carbon Development in the Yellow River Basin," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    17. Škare, Marinko & Gavurova, Beata & Porada-Rochon, Malgorzata, 2024. "Digitalization and carbon footprint: Building a path to a sustainable economic growth," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    18. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).
    19. Kangni Lyu & Shuwang Yang & Kun Zheng & Yao Zhang, 2023. "How Does the Digital Economy Affect Carbon Emission Efficiency? Evidence from Energy Consumption and Industrial Value Chain," Energies, MDPI, vol. 16(2), pages 1-20, January.
    20. Yu, Haijing & Shen, Shaowei & Han, Lei & Ouyang, Jian, 2024. "Spatiotemporal heterogeneities in the impact of the digital economy on carbon emission transfers in China," Technological Forecasting and Social Change, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5253-:d:1098597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.