IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5022-d1094907.html
   My bibliography  Save this article

A Robust Optimization Model for Multi-Period Railway Network Design Problem Considering Economic Aspects and Environmental Impact

Author

Listed:
  • Morteza Noruzi

    (Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran)

  • Ali Naderan

    (Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran)

  • Jabbar Ali Zakeri

    (School of Railway Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran)

  • Kamran Rahimov

    (Department of Roads and Transportation, Payame Noor University, Tehran 19556-43183, Iran)

Abstract

The railway network design problem is one of the critical issues in the transportation sector due to its significance and variety of necessary applications. The major issue of this field relates to the decision of whether to increase the railways’ capacity or construct a new route to meet demand. Although the budget is a great concern of the managers for making such a decision, environmental factors should be necessarily included in the decision-making process. Therefore, this research proposes a novel robust bi-objective mixed-integer linear programming (MILP) model to simultaneously minimize the total cost and environmental impact under uncertain conditions and within a given time horizon. The proposed problem addresses strategic and operational decisions through railway project selection and product flow determination. To deal with the bi-objectiveness of the model and tackle the complexity of the problem, a nondominated sorting genetic algorithm (NSGA-II) is employed. The proposed NSGA-II could reach near-optimal Pareto solutions in a reasonable solution time and showed a reliable performance for being employed in large-sized instances. It also indicates that the proposed NSGA-II can be utilized for solving large-sized samples in a very short time.

Suggested Citation

  • Morteza Noruzi & Ali Naderan & Jabbar Ali Zakeri & Kamran Rahimov, 2023. "A Robust Optimization Model for Multi-Period Railway Network Design Problem Considering Economic Aspects and Environmental Impact," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5022-:d:1094907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5022/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5022/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Dolinayova & Vladislav Zitricky & Lenka Cerna, 2020. "Decision-Making Process in the Case of Insufficient Rail Capacity," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Erfan Babaee Tirkolaee & Saeid Sadeghi & Farzaneh Mansoori Mooseloo & Hadi Rezaei Vandchali & Samira Aeini, 2021. "Application of Machine Learning in Supply Chain Management: A Comprehensive Overview of the Main Areas," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-14, June.
    4. Pazour, Jennifer A. & Meller, Russell D. & Pohl, Letitia M., 2010. "A model to design a national high-speed rail network for freight distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(3), pages 119-135, March.
    5. Mohammad Hajibabaie & Mohammad Mehdi Lotfi, 2021. "Fuzzy bi-objective inventory-routing problem for blood products in a hospital network during disasters: two multi-objective meta-heuristic approaches," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 39(1), pages 22-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    2. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    3. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    4. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    5. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    6. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    7. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    8. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    9. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    10. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    11. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    12. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    13. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    14. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    15. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    16. Evers, L. & Dollevoet, T.A.B. & Barros, A.I. & Monsuur, H., 2011. "Robust UAV Mission Planning," Econometric Institute Research Papers EI 2011-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    18. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    19. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2021. "A robust framework for designing blood network in disaster relief: a real-life case," Operational Research, Springer, vol. 21(3), pages 1529-1568, September.
    20. Cartenì, Armando & Pariota, Luigi & Henke, Ilaria, 2017. "Hedonic value of high-speed rail services: Quantitative analysis of the students’ domestic tourist attractiveness of the main Italian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 348-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5022-:d:1094907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.