IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4297-d1083023.html
   My bibliography  Save this article

Stability Analysis of Retaining Walls with Geocell-Reinforced Road Milling Materials

Author

Listed:
  • Bingbing Zhang

    (School of Highway Engineering, Chang’an University, Xi’an 710064, China)

  • Fei Song

    (School of Highway Engineering, Chang’an University, Xi’an 710064, China)

  • Weiguang Li

    (School of Highway Engineering, Chang’an University, Xi’an 710064, China)

Abstract

A series of triaxial compression tests with different confining pressures were conducted for gravels, road surface milling materials, and surface–base milling mixtures to investigate the stress–strain relationships of these three kinds of materials. On the basis of the analysis of the test results, the strength and the deformation of the geocell-reinforced surface milling materials and the geocell-encased surface–base milling mixtures were predicted and compared with those of the gravels via the constitutive model of geocell–soil composites. The effects of the geocell pocket size, tensile stiffness, and the peak internal frictional angle on the stress–strain responses of the geocell-reinforced surface–base milling mixtures were examined. Moreover, by employing the finite element strength reduction technique, stability analysis was conducted on the geocell-reinforced retaining wall with the surface–base milling mixtures to investigate the factor of safety and the failure mechanism of the structure. The study results indicated that the surface milling materials exhibited strain hardening, while the gravels and the surface–base milling mixtures exhibited strain softening. The surface milling materials displayed evident shear contraction characteristics, whereas the gravels and surface–base milling mixtures first displayed shear contraction and later dilatancy features. In addition, the strength of the geocell-reinforced surface milling materials is smaller than that of the gravels, but the strength of the geocell-encased surface–base milling mixtures is larger than that of the gravels. Thus, the geocell-reinforced surface–base milling mixtures can be used to replace the gravels in engineering practices. Additionally, the size of the sliding wedge and the factor of safety of the retaining walls increase significantly with reductions in the geocell pocket size.

Suggested Citation

  • Bingbing Zhang & Fei Song & Weiguang Li, 2023. "Stability Analysis of Retaining Walls with Geocell-Reinforced Road Milling Materials," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4297-:d:1083023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yancang Li & Lei Zhao & Juanjuan Suo, 2014. "Comprehensive Assessment on Sustainable Development of Highway Transportation Capacity Based on Entropy Weight and TOPSIS," Sustainability, MDPI, vol. 6(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Zuo & Xiuqiang Hao & Huiqiang Li & Wei Wang & Guangqing Yang & Ying Liu, 2023. "Effect of the Slit on the Mechanical Tearing Behavior of High-Density Polyethylene and Polyester Geocell Strips," Sustainability, MDPI, vol. 15(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodong Li & Haibo Kuang & Yan Hu, 2019. "Carbon Mitigation Strategies of Port Selection and Multimodal Transport Operations—A Case Study of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    2. Jingxin Sun & Zhinong Li & Jiaqiang Lei & Dexiong Teng & Shengyu Li, 2018. "Study on the Relationship between Land Transport and Economic Growth in Xinjiang," Sustainability, MDPI, vol. 10(1), pages 1-17, January.
    3. Yi Qin & Jiawen He & Miao Wei & Xixi Du, 2022. "Challenges Threatening Agricultural Sustainability in Central Asia: Status and Prospect," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    4. Željko Stević & Dragan Pamučar & Marko Subotić & Jurgita Antuchevičiene & Edmundas Kazimieras Zavadskas, 2018. "The Location Selection for Roundabout Construction Using Rough BWM-Rough WASPAS Approach Based on a New Rough Hamy Aggregator," Sustainability, MDPI, vol. 10(8), pages 1-27, August.
    5. Changjian Chen & Wei Zou & Ping Geng & Wenqi Gu & Feiyun Yuan & Chuan He, 2023. "Study on Seismic Damage Risk Assessment of Mountain Tunnel Based on the Extension Theory," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    6. Hong Chang & Xinchao Liu & Yu Xie & Yahong Liu & Wu Yang & Jianming Niu, 2022. "The Grassland Ecological Compensation Policy Drives the Differentiation of Herders’ Livelihoods in Inner Mongolian Desert Grassland," Agriculture, MDPI, vol. 12(9), pages 1-15, August.
    7. Lin Ding & Zhenfeng Shao & Hanchao Zhang & Cong Xu & Dewen Wu, 2016. "A Comprehensive Evaluation of Urban Sustainable Development in China Based on the TOPSIS-Entropy Method," Sustainability, MDPI, vol. 8(8), pages 1-23, August.
    8. Cheng Zhang & Xingli Wu & Di Wu & Huchang Liao & Li Luo & Enrique Herrera-Viedma, 2018. "An Intuitionistic Multiplicative ORESTE Method for Patients’ Prioritization of Hospitalization," IJERPH, MDPI, vol. 15(4), pages 1-18, April.
    9. Wei, Hairui & Lee, Paul Tae-Woo, 2021. "Designing a coordinated horizontal alliance system for China’s inland ports with China railway express platforms along the Silk Road Economic Belt," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    10. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2021. "Investigating the nexus among transport, economic growth and environmental degradation: Evidence from panel ARDL approach," Transport Policy, Elsevier, vol. 109(C), pages 61-71.
    11. Xi Lu & Jiaqing Lu & Xinzheng Yang & Xumei Chen, 2022. "Assessment of Urban Mobility via a Pressure-State-Response (PSR) Model with the IVIF-AHP and FCE Methods: A Case Study of Beijing, China," Sustainability, MDPI, vol. 14(5), pages 1-23, March.
    12. Guler Aras & Evrim Hacioglu Kazak, 2022. "Enhancing Firm Value through the Lens of ESG Materiality: Evidence from the Banking Sector in OECD Countries," Sustainability, MDPI, vol. 14(22), pages 1-29, November.
    13. Fei Wang & Degang Yang & Changjian Wang & Xinhuan Zhang, 2015. "The Effect of Payments for Ecosystem Services Programs on the Relationship of Livelihood Capital and Livelihood Strategy among Rural Communities in Northwestern China," Sustainability, MDPI, vol. 7(7), pages 1-21, July.
    14. Xiaomin Xu & Dongxiao Niu & Jinpeng Qiu & Meiqiong Wu & Peng Wang & Wangyue Qian & Xiang Jin, 2016. "Comprehensive Evaluation of Coordination Development for Regional Power Grid and Renewable Energy Power Supply Based on Improved Matter Element Extension and TOPSIS Method for Sustainability," Sustainability, MDPI, vol. 8(2), pages 1-17, February.
    15. Yang, Bin & Liu, Jiemei & Song, Yawei & Wang, Ning & Li, Han, 2020. "Experimental study on the influence of preparation parameters on strengthening stability of phase change materials (PCMs)," Renewable Energy, Elsevier, vol. 146(C), pages 1867-1878.
    16. Hassan Hashemi & Parviz Ghoddousi & Farnad Nasirzadeh, 2021. "Sustainability Indicator Selection by a Novel Triangular Intuitionistic Fuzzy Decision-Making Approach in Highway Construction Projects," Sustainability, MDPI, vol. 13(3), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4297-:d:1083023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.