IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3599-d1069686.html
   My bibliography  Save this article

Analyzing Physical-Mechanical and Hydrophysical Properties of Sandy Soils Exposed to Long-Term Hydrocarbon Contamination

Author

Listed:
  • Ivan Lange

    (Department of Hydrogeology and Engineering Geology, Saint-Petersburg Mining University, 199106 Saint-Petersburg, Russia)

  • Pavel Kotiukov

    (Department of Hydrogeology and Engineering Geology, Saint-Petersburg Mining University, 199106 Saint-Petersburg, Russia)

  • Yana Lebedeva

    (Department of Hydrogeology and Engineering Geology, Saint-Petersburg Mining University, 199106 Saint-Petersburg, Russia)

Abstract

This paper aims to investigate the issue of sandy soil contamination by oil hydrocarbons. Laboratory procedures used to study conditionally pure and contaminated sands include grain-size measurements and evaluation of physical-mechanical and hydrophysical properties. The results of the analysis of sand samples using visual and microscopic studies and sieve analysis show that, unlike in conditionally pure sands, in contaminated samples, the surface of mineral particles is covered by hydrocarbon film. The presence of the latter enables micro- and macroaggregates to be formed. Studies of the physical and hydrophysical properties of sands using a technique with pre-weighed glass containers, as well as a filtering device, SPETSGEO pipes, showed that, in comparison with conditionally pure samples, contaminated specimens of sandy soils have lower densities and higher permeabilities and water yields. Testing the mechanical properties of contaminated sands on the GPP-30 direct shear apparatus using the consolidated dried shear strength method revealed an increase in the angle of internal friction with a decrease in specific adhesion compared to conditionally clean sands.

Suggested Citation

  • Ivan Lange & Pavel Kotiukov & Yana Lebedeva, 2023. "Analyzing Physical-Mechanical and Hydrophysical Properties of Sandy Soils Exposed to Long-Term Hydrocarbon Contamination," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3599-:d:1069686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ekaterina Golovina & Karina Karennik, 2021. "Modern Trends in the Field of Solving Transboundary Problems in Groundwater Extraction," Resources, MDPI, vol. 10(10), pages 1-15, October.
    2. Ekaterina Golovina & Svetlana Pasternak & Pavel Tsiglianu & Nikolay Tselischev, 2021. "Sustainable Management of Transboundary Groundwater Resources: Past and Future," Sustainability, MDPI, vol. 13(21), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekaterina Golovina & Vera Khloponina & Pavel Tsiglianu & Runchu Zhu, 2023. "Organizational, Economic and Regulatory Aspects of Groundwater Resources Extraction by Individuals (Case of the Russian Federation)," Resources, MDPI, vol. 12(8), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cherepovitsyn, Alexey & Solovyova, Victoria & Dmitrieva, Diana, 2023. "New challenges for the sustainable development of the rare-earth metals sector in Russia: Transforming industrial policies," Resources Policy, Elsevier, vol. 81(C).
    2. Alexander Vitalevich Martirosyan & Yury Valerievich Ilyushin, 2022. "The Development of the Toxic and Flammable Gases Concentration Monitoring System for Coalmines," Energies, MDPI, vol. 15(23), pages 1-13, November.
    3. Tatiana Ponomarenko & Eugene Marin & Sergey Galevskiy, 2022. "Economic Evaluation of Oil and Gas Projects: Justification of Engineering Solutions in the Implementation of Field Development Projects," Energies, MDPI, vol. 15(9), pages 1-22, April.
    4. Yury Valeryevich Ilyushin & Ekaterina Ivanovna Kapostey, 2023. "Developing a Comprehensive Mathematical Model for Aluminium Production in a Soderberg Electrolyser," Energies, MDPI, vol. 16(17), pages 1-28, August.
    5. Emiliia Iakovleva & Margarita Belova & Amilcar Soares & Anton Rassõlkin, 2022. "On the Issues of Spatial Modeling of Non-Standard Profiles by the Example of Electromagnetic Emission Measurement Data," Sustainability, MDPI, vol. 14(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3599-:d:1069686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.