IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3577-d1069352.html
   My bibliography  Save this article

Elucidating Finance Gaps through the Clean Cooking Value Chain

Author

Listed:
  • Olivia Coldrey

    (Energy & Poverty Research Group, School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
    International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria)

  • Paul Lant

    (Energy & Poverty Research Group, School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia)

  • Peta Ashworth

    (Institute for Energy Transition, Curtin University, Bentley, WA 6102, Australia)

Abstract

The current supply of finance to enable universal access to clean fuels and technology for cooking does not match the scale of Sustainable Development Goal 7’s access challenge. To date, little attention has been given to the modalities of funding the clean cooking transition at the macro level. Grounded in a review of academic and recent grey literature, this study’s research objective was to provide a granular understanding of gaps in finance flows and financial instruments, mapped against the innovation cycle of companies that provide clean cooking solutions. In the context of wide-ranging barriers to the clean cooking sector’s development, we found a chronic shortfall of finance for companies at the early stages of their business growth and poorly targeted public finance to support innovation and mitigate risk for later-stage investors. This is exacerbated by limited data sharing and knowledge exchange among a small number of funders. We recommend reforms to public funding for clean cooking enterprises, especially for research, development and demonstration (RD&D) and innovation, to mitigate risk for later-stage investors, as well as more effective data sharing, to help catalyse sufficient, appropriate finance through the value chain for universal access.

Suggested Citation

  • Olivia Coldrey & Paul Lant & Peta Ashworth, 2023. "Elucidating Finance Gaps through the Clean Cooking Value Chain," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3577-:d:1069352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balachandra, P. & Kristle Nathan, Hippu Salk & Reddy, B. Sudhakara, 2010. "Commercialization of sustainable energy technologies," Renewable Energy, Elsevier, vol. 35(8), pages 1842-1851.
    2. Jocelyn Timperley, 2021. "The broken $100-billion promise of climate finance — and how to fix it," Nature, Nature, vol. 598(7881), pages 400-402, October.
    3. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    4. Daniela Andreini & Cristina Bettinelli & Nicolai J. Foss & Marco Mismetti, 2022. "Business model innovation: a review of the process-based literature," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 26(4), pages 1089-1121, December.
    5. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(7), pages 589-599, July.
    6. Shonali Pachauri & Miguel Poblete-Cazenave & Arda Aktas & Matthew J. Gidden, 2021. "Clean cooking access may stall under slow post-pandemic recovery and ambitious climate mitigation without explicit focus," Nature Energy, Nature, vol. 6(11), pages 1009-1010, November.
    7. Sagar, A. D. & Holdren, J. P., 2002. "Assessing the global energy innovation system: some key issues," Energy Policy, Elsevier, vol. 30(6), pages 465-469, May.
    8. Jeuland, Marc & Tan Soo, Jie-Sheng & Shindell, Drew, 2018. "The need for policies to reduce the costs of cleaner cooking in low income settings: Implications from systematic analysis of costs and benefits," Energy Policy, Elsevier, vol. 121(C), pages 275-285.
    9. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Author Correction: Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(8), pages 699-699, August.
    10. Susann Stritzke & Carlos Sakyi-Nyarko & Iwona Bisaga & Malcolm Bricknell & Jon Leary & Edward Brown, 2021. "Results-Based Financing (RBF) for Modern Energy Cooking Solutions: An Effective Driver for Innovation and Scale?," Energies, MDPI, vol. 14(15), pages 1-39, July.
    11. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    12. Jonas Meckling & Clara Galeazzi & Esther Shears & Tong Xu & Laura Diaz Anadon, 2022. "Energy innovation funding and institutions in major economies," Nature Energy, Nature, vol. 7(9), pages 876-885, September.
    13. Foell, Wesley & Pachauri, Shonali & Spreng, Daniel & Zerriffi, Hisham, 2011. "Household cooking fuels and technologies in developing economies," Energy Policy, Elsevier, vol. 39(12), pages 7487-7496.
    14. Govinda R. Timilsina and Sunil Malla, 2021. "Clean Cooking: Why is Adoption Slow Despite Large Health and Environmental Benefits?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    15. Vania Vigolo & Rezarta Sallaku & Federico Testa, 2018. "Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivia Coldrey & Paul Lant & Peta Ashworth & Philip LaRocco & Christine Eibs Singer, 2024. "Reforming Climate and Development Finance for Clean Cooking," Energies, MDPI, vol. 17(15), pages 1-21, July.
    2. Supriyadi Supriyadi & Kazi Sohag & Dani Yuniawan & Diyah Sukanti Cahyaningsih & Grahita Chandrarin & Dewi Astutty Mochtar, 2024. "Role of Institutional Quality and Financial Developments in Realizing Clean Energy Legislation in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 161-173, November.
    3. Susann Stritzke & Malcolm Bricknell & Matthew Leach & Samir Thapa & Yesmeen Khalifa & Ed Brown, 2023. "Impact Financing for Clean Cooking Energy Transitions: Reviews and Prospects," Energies, MDPI, vol. 16(16), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. In, Soh Young & Weyant, John P. & Manav, Berk, 2022. "Pricing climate-related risks of energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    3. Gumber, Anurag & Zana, Riccardo & Steffen, Bjarne, 2024. "A global analysis of renewable energy project commissioning timelines," Applied Energy, Elsevier, vol. 358(C).
    4. Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
    5. Dahlen, Niklas & Fehrenkötter, Rieke & Schreiter, Maximilian, 2024. "The new bond on the block — Designing a carbon-linked bond for sustainable investment projects," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 316-325.
    6. Joëlle Noailly & Roger Smeets, 2022. "Financing Energy Innovation: Internal Finance and the Direction of Technical Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 145-169, September.
    7. Wu, Qingyang & Wang, Yanying, 2022. "How does carbon emission price stimulate enterprises' total factor productivity? Insights from China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 109(C).
    8. Marco Due~nas & Antoine Mandel, 2024. "Are EU low-carbon structural funds efficient in reducing emissions?," Papers 2408.01782, arXiv.org.
    9. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    10. Lin, Yuanxiong & Anser, Muhammad Khalid & Peng, Michael Yao-Ping & Irfan, Muhammad, 2023. "Assessment of renewable energy, financial growth and in accomplishing targets of China's cities carbon neutrality," Renewable Energy, Elsevier, vol. 205(C), pages 1082-1091.
    11. Perdana, Sigit & Vielle, Marc, 2022. "Making the EU Carbon Border Adjustment Mechanism acceptable and climate friendly for least developed countries," Energy Policy, Elsevier, vol. 170(C).
    12. Thomas Baldauf & Patrick Jochem, 2024. "Project finance or corporate finance for renewable energy? an agent-based insight," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 19(4), pages 759-805, October.
    13. Negro, Simona O. & Hekkert, Marko P. & Smits, Ruud E., 2007. "Explaining the failure of the Dutch innovation system for biomass digestion--A functional analysis," Energy Policy, Elsevier, vol. 35(2), pages 925-938, February.
    14. Nirvikar Singh, 2022. "India’s Strategy for Achieving Net Zero," Energies, MDPI, vol. 15(16), pages 1-11, August.
    15. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    16. Tommy Chrimes & Bram Gootjes & M. Ayhan Kose & Collette Wheeler, 2024. "The Great Reversal," World Bank Publications - Books, The World Bank Group, number 41403.
    17. Qian Zhang & Christopher Kennedy & Tao Wang & Wendong Wei & Jiashuo Li & Lei Shi, 2020. "Transforming the coal and steel nexus for China's eco‐civilization: Interplay between rail and energy infrastructure," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1352-1363, December.
    18. Dong, Kangyin & Wei, Shuo & Liu, Yang & Zhao, Jun, 2023. "How does energy poverty eradication promote common prosperity in China? The role of labor productivity," Energy Policy, Elsevier, vol. 181(C).
    19. Zohra Dradra & Chokri Abdennadher, 2023. "Modeling the effects of renewable energy on sustainable development: evidence from simultaneous equations models," Economic Change and Restructuring, Springer, vol. 56(4), pages 2111-2128, August.
    20. Han Wang & Wenjuan Dong & Hongji Li & Ershun Du, 2023. "Investment Estimation in the Energy and Power Sector towards Carbon Neutrality Target: A Case Study of China," Sustainability, MDPI, vol. 15(5), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3577-:d:1069352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.