IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3135-d1062361.html
   My bibliography  Save this article

Research on the Integration of a Natural Gas-Distributed Energy System into the Oilfield Facility in China

Author

Listed:
  • Pengying Wang

    (College of Engineering and Technology, Jilin Agricultural University, Changchun 130117, China)

  • Shuo Zhang

    (College of Engineering and Technology, Jilin Agricultural University, Changchun 130117, China)

  • Limei Chen

    (College of Engineering and Technology, Jilin Agricultural University, Changchun 130117, China)

Abstract

The oilfield facility provides a sufficient supply of self-produced natural gas and has an obvious price advantage. However, China’s oilfield facilities are supplied with electricity and heat from the external grid and natural gas boilers separately. Therefore, in this study, a natural gas distributed energy saving system is built in the oilfield facility, which can supply electricity and heating simultaneously. An oilfield facility in Changchun, China, is used as the case study in this research to design a natural gas-distributed energy system. The operational carbon emissions and the operating cost are used as evaluation criteria. Three energy supply methods of the natural gas-distributed energy system are studied. Meanwhile, the impacts of China’s distributed energy policy are also quantified to determine the capacity of the power generation units. The results reveal that under the optimized following the heating load method (FHL-restricted), where the self-electricity consumption ratio of the gas engine is kept at 50%, the natural gas-distributed energy systems can meet policy requirements while achieving optimal carbon emission reductions and minimizing operating costs. The newly built system can simultaneously achieve the goals of energy saving, carbon emission reduction, and energy cost mitigation.

Suggested Citation

  • Pengying Wang & Shuo Zhang & Limei Chen, 2023. "Research on the Integration of a Natural Gas-Distributed Energy System into the Oilfield Facility in China," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3135-:d:1062361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Ge, Yi & Han, Jitian & Ma, Qingzhao & Feng, Jiahui, 2022. "Optimal configuration and operation analysis of solar-assisted natural gas distributed energy system with energy storage," Energy, Elsevier, vol. 246(C).
    3. Rashid, Kashif & Speck, Andrew & Osedach, Timothy P. & Perroni, Dominic V. & Pomerantz, Andrew E., 2020. "Optimized inspection of upstream oil and gas methane emissions using airborne LiDAR surveillance," Applied Energy, Elsevier, vol. 275(C).
    4. Gurbanov, Sarvar, 2021. "Role of Natural Gas Consumption in the Reduction of CO2 Emissions: Case of Azerbaijan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14(22).
    5. Mateo, C. & Frías, P. & Tapia-Ahumada, K., 2020. "A comprehensive techno-economic assessment of the impact of natural gas-fueled distributed generation in European electricity distribution networks," Energy, Elsevier, vol. 192(C).
    6. Li, Zhuochao & Zhang, Haoran & Meng, Jing & Long, Yin & Yan, Yamin & Li, Meixuan & Huang, Zhongliang & Liang, Yongtu, 2020. "Reducing carbon footprint of deep-sea oil and gas field exploitation by optimization for Floating Production Storage and Offloading," Applied Energy, Elsevier, vol. 261(C).
    7. Yang, Hangbo & You, Pengcheng & Shang, Ce, 2021. "Distributed planning of electricity and natural gas networks and energy hubs," Applied Energy, Elsevier, vol. 282(PA).
    8. Song, Xiaoling & Wang, Yudong & Zhang, Zhe & Shen, Charles & Peña-Mora, Feniosky, 2021. "Economic-environmental equilibrium-based bi-level dispatch strategy towards integrated electricity and natural gas systems," Applied Energy, Elsevier, vol. 281(C).
    9. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tong & Li, Zhigang & Wu, Qiuwei & Pan, Shixian & Wu, Q.H., 2022. "Dynamic energy flow analysis of integrated gas and electricity systems using the holomorphic embedding method," Applied Energy, Elsevier, vol. 309(C).
    2. Shi, Yu & Yang, Zijiang & Peng, Junlan & Zhou, Mengmeng & Song, Xianzhi & Cui, Qiliang & Fan, Meng, 2024. "CO2 storage characteristics and migration patterns under different abandoned oil and gas well types," Energy, Elsevier, vol. 292(C).
    3. Noshchenko, Olga & Hagspiel, Verena, 2024. "Environmental and economic multi-objective real options analysis: Electrification choices for field development investment planning," Energy, Elsevier, vol. 295(C).
    4. Jin, Baohong, 2023. "Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems," Energy, Elsevier, vol. 273(C).
    5. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    6. Daniel Then & Patrick Hein & Tanja M. Kneiske & Martin Braun, 2020. "Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions," Sustainability, MDPI, vol. 12(13), pages 1-42, July.
    7. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
    8. Dong, Haoxin & Shan, Zijing & Zhou, Jianli & Xu, Chuanbo & Chen, Wenjun, 2023. "Refined modeling and co-optimization of electric-hydrogen-thermal-gas integrated energy system with hybrid energy storage," Applied Energy, Elsevier, vol. 351(C).
    9. Stennikov, Valery & Barakhtenko, Evgeny & Mayorov, Gleb & Sokolov, Dmitry & Zhou, Bin, 2022. "Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach," Applied Energy, Elsevier, vol. 309(C).
    10. Li, Shenglin & Zhu, Jizhong & Dong, Hanjiang & Zhu, Haohao & Fan, Junwei, 2022. "A novel rolling optimization strategy considering grid-connected power fluctuations smoothing for renewable energy microgrids," Applied Energy, Elsevier, vol. 309(C).
    11. Shuo Sun & Linwei Ma & Zheng Li, 2021. "Methane Emission Estimation of Oil and Gas Sector: A Review of Measurement Technologies, Data Analysis Methods and Uncertainty Estimation," Sustainability, MDPI, vol. 13(24), pages 1-29, December.
    12. Aditya Prana Iswara & Aulia Ulfah Farahdiba & Rachmat Boedisantoso & Anwar Rosyid & Sunu Priambodo & Lin-Han Chiang Hsieh, 2023. "Carbon footprint of offshore platform in Indonesia using life cycle approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11263-11284, October.
    13. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Wang, Ming, 2023. "Heat extraction performance evaluation of U-shaped well geothermal production system under different well-layout parameters and engineering schemes," Renewable Energy, Elsevier, vol. 203(C), pages 473-484.
    14. Sarvar Gurbanov & Jeyhun I. Mikayilov & Shahriyar Mukhtarov & Shahin Maharramli, 2023. "The price and income elasticities of natural gas demand in Azerbaijan: Is there room to export more?," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    15. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    16. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    17. Fengyuan Yan & Xiaolong Han & Qianwei Cheng & Yamin Yan & Qi Liao & Yongtu Liang, 2022. "Scenario-Based Comparative Analysis for Coupling Electricity and Hydrogen Storage in Clean Oilfield Energy Supply System," Energies, MDPI, vol. 15(6), pages 1-28, March.
    18. Ahmed, Ijaz & Rehan, Muhammad & Basit, Abdul & Malik, Saddam Hussain & Alvi, Um-E-Habiba & Hong, Keum-Shik, 2022. "Multi-area economic emission dispatch for large-scale multi-fueled power plants contemplating inter-connected grid tie-lines power flow limitations," Energy, Elsevier, vol. 261(PB).
    19. Ma, Ning & Fan, Lurong, 2023. "Double recovery strategy of carbon for coal-to-power based on a multi-energy system with tradable green certificates," Energy, Elsevier, vol. 273(C).
    20. Li, Jinyu & Yang, Zhengda & Ge, Yi & Wang, Yiya & Dong, Qiwei & Wang, Xinwei & Lin, Riyi, 2024. "Performance study of photovoltaic-thermochemical hybrid system with Cassegrain concentrator and spectral splitting integration," Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3135-:d:1062361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.