IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2162-d1045414.html
   My bibliography  Save this article

Growth Conditions and Growth Kinetics of Chlorella Vulgaris Cultured in Domestic Sewage

Author

Listed:
  • Xingguan Ma

    (School of Municipal and Environmental Engineering, Shenyang University of Architecture, Shenyang 110168, China
    Liaohe River Basin Water Pollution Control Institute, Shenyang 110168, China)

  • Wenhao Jian

    (School of Municipal and Environmental Engineering, Shenyang University of Architecture, Shenyang 110168, China)

Abstract

To assess the feasibility of achieving the dual objectives of domestic wastewater treatment and biomass accumulation, growth kinetic models were used to analyze the growth pattern of Chlorella in domestic wastewater. The logistic model simulated the growth trend of Chlorella in domestic wastewater better than the other two models. However, the currently developed model still cannot fully predict the growth of Chlorella. Factors such as nutrient removal and aging and the death of algae need to be taken into account to develop a more accurate model.

Suggested Citation

  • Xingguan Ma & Wenhao Jian, 2023. "Growth Conditions and Growth Kinetics of Chlorella Vulgaris Cultured in Domestic Sewage," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2162-:d:1045414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Wenguang & Chen, Paul & Min, Min & Ma, Xiaochen & Wang, Jinghan & Griffith, Richard & Hussain, Fida & Peng, Pu & Xie, Qinglong & Li, Yun & Shi, Jian & Meng, Jianzong & Ruan, Roger, 2014. "Environment-enhancing algal biofuel production using wastewaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 256-269.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    2. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    4. Lam, Man Kee & Yusoff, Mohammad Iqram & Uemura, Yoshimitsu & Lim, Jun Wei & Khoo, Choon Gek & Lee, Keat Teong & Ong, Hwai Chyuan, 2017. "Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies," Renewable Energy, Elsevier, vol. 103(C), pages 197-207.
    5. Tu, Qingshi & Eckelman, Matthew & Zimmerman, Julie Beth, 2018. "Harmonized algal biofuel life cycle assessment studies enable direct process train comparison," Applied Energy, Elsevier, vol. 224(C), pages 494-509.
    6. Guyue Zou & Yuhuan Liu & Qi Zhang & Ting Zhou & Shuyu Xiang & Zhiqiang Gu & Qiaoyun Huang & Hongbin Yan & Hongli Zheng & Xiaodan Wu & Yunpu Wang & Roger Ruan & Mingzhi Liu, 2020. "Cultivation of Chlorella vulgaris in a Light-Receiving-Plate (LRP)-Enhanced Raceway Pond for Ammonium and Phosphorus Removal from Pretreated Pig Urine," Energies, MDPI, vol. 13(7), pages 1-15, April.
    7. Leong, Wai-Hong & Lim, Jun-Wei & Lam, Man-Kee & Uemura, Yoshimitsu & Ho, Yeek-Chia, 2018. "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 950-961.
    8. Bibi, Riaz & Ahmad, Zulfiqar & Imran, Muhammad & Hussain, Sabir & Ditta, Allah & Mahmood, Shahid & Khalid, Azeem, 2017. "Algal bioethanol production technology: A trend towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 976-985.
    9. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    10. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    11. Han, Song-Fang & Jin, Wenbiao & Yang, Qian & El-Fatah Abomohra, Abd & Zhou, Xu & Tu, Renjie & Chen, Chuan & Xie, Guo-Jun & Wang, Qilin, 2019. "Application of pulse electric field pretreatment for enhancing lipid extraction from Chlorella pyrenoidosa grown in wastewater," Renewable Energy, Elsevier, vol. 133(C), pages 233-239.
    12. Zhang, Tian-Yuan & Hu, Hong-Ying & Wu, Yin-Hu & Zhuang, Lin-Lan & Xu, Xue-Qiao & Wang, Xiao-Xiong & Dao, Guo-Hua, 2016. "Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1602-1614.
    13. Attila Bai & József Popp & Károly Pető & Irén Szőke & Mónika Harangi-Rákos & Zoltán Gabnai, 2017. "The Significance of Forests and Algae in CO 2 Balance: A Hungarian Case Study," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    14. Zhou, Wenguang & Wang, Jinghan & Chen, Paul & Ji, Chengcheng & Kang, Qiuyun & Lu, Bei & Li, Kun & Liu, Jin & Ruan, Roger, 2017. "Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1163-1175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2162-:d:1045414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.