IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p1986-d1042281.html
   My bibliography  Save this article

Response of Soil Environment and Microbial Community Structure to Different Ratios of Long-Term Straw Return and Nitrogen Fertilizer in Wheat–Maize System

Author

Listed:
  • Man Yu

    (Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)

  • Qingxia Wang

    (Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)

  • Yao Su

    (Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)

  • Hui Xi

    (Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)

  • Yuying Qiao

    (Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)

  • Zhanlin Guo

    (Institute of Plant nutrient, Environment and Resource, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China)

  • Yunlong Wang

    (Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)

  • Alin Shen

    (Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
    Institute of Plant nutrient, Environment and Resource, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China)

Abstract

To determine the reasonable rate of straw return and nitrogen (N) fertilizer use which may maintain soil ecosystem health, we analyzed their soil microbial biomass and composition in a 10-year field experiment with different rates of straw return (50%, 100%) and N fertilizer (270, 360, 450, 540 kg N ha −1 yr −1 ) by phospholipid fatty acid (PLFA) analysis and high-throughput sequencing. A rate of 50% straw return combined with 450 or 540 kg N ha −1 yr −1 effectively increased the soil available nutrient contents mainly for total nitrogen, available potassium, and available phosphorus. Total PLFAs indicated that straw return combined with N fertilizer promoted soil microbial growth and increased biomass. A rate of 100% straw return with 450 kg N ha −1 yr −1 was not conducive to the stability of the soil ecosystem according to the ratio of fungi to bacteria (F:B). The similar rate of straw returning and the similar level of nitrogen fertilizer application will be divided into the same cluster using a heatmap analysis. Some saprophytic fungi or pathogens became the dominant fungi genera, such as Gibberella , Sarocladium, Pseudallescheria , and Mycosphaerella , in the treatments with 100% straw returning combining higher N fertilizer (>450 kg ha −1 yr −1 yr −1 added). The relative abundances of some heavy metal-tolerant bacteria, such as those in Proteobacteria and Chlorobi, increased in the soils in the 100% straw return treatments. Therefore, the combined application of 100% straw returning and higher N fertilizer (>450 kg ha −1 yr −1 ) added long-term was not appropriate for soil health, which will lead to the risk of disease and pollution in soil.

Suggested Citation

  • Man Yu & Qingxia Wang & Yao Su & Hui Xi & Yuying Qiao & Zhanlin Guo & Yunlong Wang & Alin Shen, 2023. "Response of Soil Environment and Microbial Community Structure to Different Ratios of Long-Term Straw Return and Nitrogen Fertilizer in Wheat–Maize System," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1986-:d:1042281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/1986/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/1986/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Dongyan & Guo, Liping & Zheng, Lei & Zhang, Yigong & Yang, Rongquan & Li, Ming & Ma, Fen & Zhang, Xinyue & Li, Yingchun, 2019. "Effects of nitrogen fertilizer and water management practices on nitrogen leaching from a typical open field used for vegetable planting in northern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 913-921.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbara Breza-Boruta & Justyna Bauza-Kaszewska, 2023. "Effect of Microbial Preparation and Biomass Incorporation on Soil Biological and Chemical Properties," Agriculture, MDPI, vol. 13(5), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingchen Huang & Yuning Zou & Cece Qiao & Qiumeng Liu & Jingwen Liu & Rui Kang & Lantian Ren & Wenge Wu, 2023. "Effects of Biological Nitrification Inhibitor on Nitrous Oxide and nosZ, nirK, nirS Denitrifying Bacteria in Paddy Soils," Sustainability, MDPI, vol. 15(6), pages 1-12, March.
    2. Fan Luo & Xiao-Juan Yan & Xue-Feng Hu & Li-Jun Yan & Ming-Yang Cao & Wei-Jie Zhang, 2022. "Nitrate Quantification in Fresh Vegetables in Shanghai: Its Dietary Risks and Preventive Measures," IJERPH, MDPI, vol. 19(21), pages 1-13, November.
    3. Yucong Geng & Muhammad Amjad Bashir & Ying Zhao & Jianhang Luo & Xiaotong Liu & Feng Li & Hongyuan Wang & Qurat-Ul-Ain Raza & Abdur Rehim & Xuejun Zhang & Hongbin Liu, 2022. "Long-Term Fertilizer Reduction in Greenhouse Tomato-Cucumber Rotation System to Assess N Utilization, Leaching, and Cost Efficiency," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    4. Tongkun Zhang & Yuan Tang & Weichang Gao & Xinqing Lee & Huan Li & Wei Hu & Jianzhong Cheng, 2023. "Combined Effects of Biochar and Inhibitors on Greenhouse Gas Emissions, Global Warming Potential, and Nitrogen Use Efficiency in the Tobacco Field," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    5. Sun, Xiaolei & Yang, Xiaosong & Hu, Zhengyi & Liu, Fulai & Xie, Zijian & Li, Songyan & Wang, Guoxi & Li, Meng & Sun, Zheng & Bol, Roland, 2024. "Biochar effects on soil nitrogen retention, leaching and yield of perennial citron daylily under three irrigation regimes," Agricultural Water Management, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1986-:d:1042281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.