IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p1806-d1039061.html
   My bibliography  Save this article

The Possibility of Using Superconducting Magnetic Energy Storage/Battery Hybrid Energy Storage Systems Instead of Generators as Backup Power Sources for Electric Aircraft

Author

Listed:
  • Hamoud Alafnan

    (Department of Electrical Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia)

  • Xiaoze Pei

    (Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK)

  • Moanis Khedr

    (Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK)

  • Ibrahim Alsaleh

    (Department of Electrical Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia)

  • Abdullah Albaker

    (Department of Electrical Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia)

  • Mansoor Alturki

    (Department of Electrical Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia)

  • Diaa-Eldin A. Mansour

    (Department of Electrical Power Engineering, School of Electronics, Communications and Computer Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
    Department of Electrical Power and Machines Engineering, Faculty of Engineering, Tanta University, Tanta 31511, Egypt)

Abstract

The annual growth rate of aircraft passengers is estimated to be 6.5%, and the CO 2 emissions from current large-scale aviation transportation technology will continue to rise dramatically. Both NASA and ACARE have set goals to enhance efficiency and reduce the fuel burn, pollution, and noise levels of commercial aircraft. However, such radical improvements require radical solutions. With the current traditional aircraft designs based on gas turbines or piston engines, these goals are infeasible. Small-scale aircraft have successfully proven emission reductions using energy storage systems, such as Alice aircraft. This paper involves an investigation of the possibility of using superconducting magnetic energy storage (SMES)/battery hybrid energy storage systems (HESSs) instead of generators as backup power sources to improve system efficiency and reduce emissions. Two different power system architectures of electric aircraft (EA) were compared in terms of reliability and stability in a one-generator failure scenario. As weight is crucial in EA designs, the weights of the two systems were compared, including the generators and energy storage systems. The two EA systems were built in Simulink/MATLAB to compare their reliability and stability. With the currently available technologies, based on the energy density of 250 Wh/kg for lithium-ion batteries and a power density of 8.8 kW/kg for generators, the use of the generators as backup sources proved more efficient than the use of HESS. The break-even point was observed at 750 Wh/kg for battery energy density. Any value more than the 750 Wh/kg energy density makes HESS lighter and more efficient than generators.

Suggested Citation

  • Hamoud Alafnan & Xiaoze Pei & Moanis Khedr & Ibrahim Alsaleh & Abdullah Albaker & Mansoor Alturki & Diaa-Eldin A. Mansour, 2023. "The Possibility of Using Superconducting Magnetic Energy Storage/Battery Hybrid Energy Storage Systems Instead of Generators as Backup Power Sources for Electric Aircraft," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1806-:d:1039061
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/1806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/1806/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanaa Elsherbiny & Laszlo Szamel & Mohamed Kamal Ahmed & Mahmoud A. Elwany, 2022. "High Accuracy Modeling of Permanent Magnet Synchronous Motors Using Finite Element Analysis," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sherif A. Zaid & Ahmed M. Kassem & Aadel M. Alatwi & Hani Albalawi & Hossam AbdelMeguid & Atef Elemary, 2023. "Optimal Control of an Autonomous Microgrid Integrated with Super Magnetic Energy Storage Using an Artificial Bee Colony Algorithm," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    2. Hamoud Alafnan & Xiaoze Pei & Diaa-Eldin A. Mansour & Moanis Khedr & Wenjuan Song & Ibrahim Alsaleh & Abdullah Albaker & Mansoor Alturki & Xianwu Zeng, 2023. "Impact of Copper Stabilizer Thickness on SFCL Performance with PV-Based DC Systems Using a Multilayer Thermoelectric Model," Sustainability, MDPI, vol. 15(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Stumpf & Tamás Tóth-Katona, 2023. "Recent Achievements in the Control of Interior Permanent-Magnet Synchronous Machine Drives: A Comprehensive Overview of the State of the Art," Energies, MDPI, vol. 16(13), pages 1-46, July.
    2. Christian Aldrete-Maldonado & Ramon Ramirez-Villalobos & Luis N. Coria & Corina Plata-Ante, 2023. "Sensorless Scheme for Permanent-Magnet Synchronous Motors Susceptible to Time-Varying Load Torques," Mathematics, MDPI, vol. 11(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1806-:d:1039061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.