IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1642-d1035850.html
   My bibliography  Save this article

Sustainable Restoration of Depleted Quarries by the Utilization of Biomass Energy By-Products: The Case of Olive Kernel Residuals

Author

Listed:
  • Charalampos Vasilatos

    (Department of Economic Geology and Geochemistry, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece)

  • Zacharenia Kypritidou

    (Department of Economic Geology and Geochemistry, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece)

  • Marianthi Anastasatou

    (Department of Economic Geology and Geochemistry, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece)

  • Konstantinos Aspiotis

    (School of Chemical Engineering, National Technical University of Athens, 15773 Athens, Greece)

Abstract

The combustion of biomass has a neutral atmospheric CO 2 fingerprint, because the overall produced CO 2 emissions are balanced by the CO 2 uptake from the plants during their growth. The current study evaluates the environmental impact of the biomass ash wastes originating from the combustion of olive-kernel residuals for electricity production in accordance with Directive EE/2003. Additionally, the study investigates the potential use of such waste in the restoration of depleted calcareous aggregate quarries in the frame of the circular economy, as a substrate or as a soil amendment. Olive-kernel residual ash, obtained from a 5 MW operating electricity power plant, was mixed with soil and tested for its adequacy for use as a substrate or soil amendment in a depleted calcareous aggregate quarry. The positive effects of the olive-kernel residual bottom ashes in the availability and the mobility of major and trace elements were assessed in both batch and column experiments. The effect of biomass ash in soil amelioration was assessed via pot experiments, by examining the growth of two plant species Cupressus sempervirens (cypress) and Dichondra repens (alfalfa). The environmental characterization of the olive-kernel residual bottom ash indicates that the water-leachable concentrations of controlled elements are, generally, within the acceptable limits for disposal as inert waste in landfills. However, the bottom ash was found to contain significant amounts of K, Ca and Mg, which are macro-nutrients for the growth of plants, serving as a slow-release fertilizer by adding nutrients in the soil. The application of bottom ash in the alkaline soil had a minor positive effect in plant growth while the addition of the ash in the acidic soil exhibited considerable effect in the growth of Dichondra repens and Cupressus sempervirens due to the release of nutrients and to the pH conditioning. Olive-kernel residual bottom ash has been proved to be appropriate as a soil amendment, and as a soil substrate for the restoration of depleted quarries, decreasing the requirement for commercial inorganic fertilizers.

Suggested Citation

  • Charalampos Vasilatos & Zacharenia Kypritidou & Marianthi Anastasatou & Konstantinos Aspiotis, 2023. "Sustainable Restoration of Depleted Quarries by the Utilization of Biomass Energy By-Products: The Case of Olive Kernel Residuals," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1642-:d:1035850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1642/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1642/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehta, Neha & Anderson, Aine & Johnston, Christopher R. & Rooney, David W., 2022. "Evaluating the opportunity for utilising anaerobic digestion and pyrolysis of livestock manure and grass silage to decarbonise gas infrastructure: A Northern Ireland case study," Renewable Energy, Elsevier, vol. 196(C), pages 343-357.
    2. Xin Deng & Lingzhi Zhang & Rong Xu & Miao Zeng & Qiang He & Dingde Xu & Yanbin Qi, 2022. "Do Cooperatives Affect Groundwater Protection? Evidence from Rural China," Agriculture, MDPI, vol. 12(7), pages 1-14, July.
    3. Daniele Duca & Giuseppe Toscano, 2022. "Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability," Resources, MDPI, vol. 11(6), pages 1-6, June.
    4. Sun, Yufeng & Yang, Bin & Wang, Yapeng & Zheng, Zipeng & Wang, Jinwei & Yue, Yaping & Mu, Wenlong & Xu, Guangyin & Jilai Ying,, 2023. "Emergy evaluation of biogas production system in China from perspective of collection radius," Energy, Elsevier, vol. 265(C).
    5. Yanjie Zhang & Weiyang Dong & Guokai Yan & Haiyan Wang & Huan Wang & Yang Chang & Shan Yu & Zhaosheng Chu & Yu Ling & Congyu Li, 2022. "Plant Carbon Sources for Denitrification Enhancement and Its Mechanism in Constructed Wetlands: A Review," Sustainability, MDPI, vol. 14(19), pages 1-23, October.
    6. Wang, Chao & Feng, Dong & Xia, Ao & Nizami, Abdul-Sattar & Huang, Yun & Zhu, Xianqing & Zhu, Xun & Liao, Qiang & Murphy, Jerry D., 2024. "A comparative life cycle assessment of electro-anaerobic digestion to evaluate biomethane generation from organic solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1642-:d:1035850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.