IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1378-d1032150.html
   My bibliography  Save this article

Efficient Scheduling of Home Energy Management Controller (HEMC) Using Heuristic Optimization Techniques

Author

Listed:
  • Zafar Mahmood

    (Department of Computer Science, University of Gujrat, Gujrat 50700, Pakistan)

  • Benmao Cheng

    (Jiangsu Key Lab of IoT Application Technology, Wuxi Taihu University, Wuxi 214064, China)

  • Naveed Anwer Butt

    (Department of Computer Science, University of Gujrat, Gujrat 50700, Pakistan)

  • Ghani Ur Rehman

    (Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27000, Pakistan)

  • Muhammad Zubair

    (Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak 27000, Pakistan)

  • Afzal Badshah

    (Department of Computer Science & Software Engineering, International Islamic University, Islamabad 44000, Pakistan)

  • Muhammad Aslam

    (School of Computing Engineering and Physical Sciences, University of West of Scotland, Paisley G72 0LH, UK
    Scotland Academy, Wuxi Taihu University, Wuxi 214064, China)

Abstract

The main problem for both the utility companies and the end-used is to efficiently schedule the home appliances using energy management to optimize energy consumption. The microgrid, macro grid, and Smart Grid (SG) are state-of-the-art technology that is user and environment-friendly, reliable, flexible, and controllable. Both utility companies and end-users are interested in effectively utilizing different heuristic optimization techniques to address demand-supply management efficiently based on consumption patterns. Similarly, the end-user has a greater concern with the electricity bills, how to minimize electricity bills, and how to reduce the Peak to Average Ratio (PAR). The Home Energy Management Controller (HEMC) is integrated into the smart grid, by providing many benefits to the end-user as well to the utility. In this research paper, we design an efficient HEMC system by using different heuristic optimization techniques such as Genetic Algorithm (GA), Binary Particle Swarm Optimization (BPSO), and Wind Driven Optimization (WDO), to address the problem stated above. We consider a typical home, to have a large number of appliances and an on-site renewable energy generation and storage system. As a key contribution, here we focus on incentive-based programs such as Demand Response (DR) and Time of Use (ToU) pricing schemes which restrict the end-user energy consumption during peak demands. From the results figures, it is clear that our HEMC not only schedules all the appliances but also generates optimal patterns for energy consumption based on the ToU pricing scheme. As a secondary contribution, deploying an efficient ToU scheme benefits the end-user by paying minimum electricity bills, while considering user comfort, at the same time benefiting utilities by reducing the peak demand. From the graphs, it is clear that HEMC using GA shows better results than WDO and BPSO, in energy consumption and electricity cost, while BPSO is more prominent than WDO and GA by calculating PAR.

Suggested Citation

  • Zafar Mahmood & Benmao Cheng & Naveed Anwer Butt & Ghani Ur Rehman & Muhammad Zubair & Afzal Badshah & Muhammad Aslam, 2023. "Efficient Scheduling of Home Energy Management Controller (HEMC) Using Heuristic Optimization Techniques," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1378-:d:1032150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Reza Salehizadeh & Mahdi Amidi Koohbijari & Hassan Nouri & Akın Taşcıkaraoğlu & Ozan Erdinç & João P. S. Catalão, 2019. "Bi-Objective Optimization Model for Optimal Placement of Thyristor-Controlled Series Compensator Devices," Energies, MDPI, vol. 12(13), pages 1-16, July.
    2. Rasheed, Muhammad Babar & R-Moreno, María D., 2022. "Minimizing pricing policies based on user load profiles and residential demand responses in smart grids," Applied Energy, Elsevier, vol. 310(C).
    3. Guo, Bowei & Weeks, Melvyn, 2022. "Dynamic tariffs, demand response, and regulation in retail electricity markets," Energy Economics, Elsevier, vol. 106(C).
    4. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    5. Ullah, Kalim & Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Javaid, Nadeem, 2021. "A multi-objective energy optimization in smart grid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 299(C).
    6. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Ehsanifar & Fatemeh Dekamini & Cristi Spulbar & Ramona Birau & Moein Khazaei & Iuliana Carmen Bărbăcioru, 2023. "A Sustainable Pattern of Waste Management and Energy Efficiency in Smart Homes Using the Internet of Things (IoT)," Sustainability, MDPI, vol. 15(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kabulo Loji & Sachin Sharma & Nomhle Loji & Gulshan Sharma & Pitshou N. Bokoro, 2023. "Operational Issues of Contemporary Distribution Systems: A Review on Recent and Emerging Concerns," Energies, MDPI, vol. 16(4), pages 1-21, February.
    2. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    3. Tom Elliott & Joachim Geske & Richard Green, 2022. "Business Models for Active Buildings," Energies, MDPI, vol. 15(19), pages 1-17, October.
    4. Zhu, Junpeng & Meng, Dexin & Dong, Xiaofeng & Fu, Zhixin & Yuan, Yue, 2023. "An integrated electricity - hydrogen market design for renewable-rich energy system considering mobile hydrogen storage," Renewable Energy, Elsevier, vol. 202(C), pages 961-972.
    5. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    6. Atif Maqbool Khan & Artur Wyrwa, 2024. "A Survey of Quantitative Techniques in Electricity Consumption—A Global Perspective," Energies, MDPI, vol. 17(19), pages 1-38, September.
    7. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    8. Dhiaa Halboot Muhsen & Haider Tarish Haider & Yaarob Al-Nidawi & Ghadeer Ghazi Shayea, 2023. "Operational Scheduling of Household Appliances by Using Triple-Objective Optimization Algorithm Integrated with Multi-Criteria Decision Making," Sustainability, MDPI, vol. 15(24), pages 1-24, December.
    9. Fahad R. Albogamy & Ghulam Hafeez & Imran Khan & Sheraz Khan & Hend I. Alkhammash & Faheem Ali & Gul Rukh, 2021. "Efficient Energy Optimization Day-Ahead Energy Forecasting in Smart Grid Considering Demand Response and Microgrids," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    10. Kalim Ullah & Taimoor Ahmad Khan & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Basem Alamri & Faheem Ali & Sajjad Ali & Sheraz Khan, 2022. "Demand Side Management Strategy for Multi-Objective Day-Ahead Scheduling Considering Wind Energy in Smart Grid," Energies, MDPI, vol. 15(19), pages 1-14, September.
    11. Yang, Xiaohui & Wang, Xiaopeng & Deng, Yeheng & Mei, Linghao & Deng, Fuwei & Zhang, Zhonglian, 2023. "Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization," Renewable Energy, Elsevier, vol. 218(C).
    12. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    13. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    14. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Seyed Reza Seyednouri & Amin Safari & Meisam Farrokhifar & Sajad Najafi Ravadanegh & Anas Quteishat & Mahmoud Younis, 2023. "Day-Ahead Scheduling of Multi-Energy Microgrids Based on a Stochastic Multi-Objective Optimization Model," Energies, MDPI, vol. 16(4), pages 1-17, February.
    16. Evgenia Kapassa & Marinos Themistocleous, 2022. "Blockchain Technology Applied in IoV Demand Response Management: A Systematic Literature Review," Future Internet, MDPI, vol. 14(5), pages 1-19, April.
    17. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    18. Jemma J. Makrygiorgou & Christos-Spyridon Karavas & Christos Dikaiakos & Ioannis P. Moraitis, 2023. "The Electricity Market in Greece: Current Status, Identified Challenges, and Arranged Reforms," Sustainability, MDPI, vol. 15(4), pages 1-40, February.
    19. Despotovic, Milan & Voyant, Cyril & Garcia-Gutierrez, Luis & Almorox, Javier & Notton, Gilles, 2024. "Solar irradiance time series forecasting using auto-regressive and extreme learning methods: Influence of transfer learning and clustering," Applied Energy, Elsevier, vol. 365(C).
    20. Ma, Siyu & Liu, Hui & Wang, Ni & Huang, Lidong & Goh, Hui Hwang, 2023. "Incentive-based demand response under incomplete information based on the deep deterministic policy gradient," Applied Energy, Elsevier, vol. 351(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1378-:d:1032150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.