IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16917-d1301781.html
   My bibliography  Save this article

Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and Perspectives

Author

Listed:
  • Alessandro Franco

    (Department of Energy, Systems, Territory and Constructions Engineering (DESTEC), University of Pisa, 56122 Pisa, Italy)

  • Caterina Giovannini

    (Department of Energy, Systems, Territory and Constructions Engineering (DESTEC), University of Pisa, 56122 Pisa, Italy)

Abstract

This paper delves into the pivotal role of water electrolysis (WE) in green hydrogen production, a process utilizing renewable energy sources through electrolysis. The term “green hydrogen” signifies its distinction from conventional “grey” or “brown” hydrogen produced from fossil fuels, emphasizing the importance of decarbonization in the hydrogen value chain. WE becomes a linchpin, balancing surplus green energy, stabilizing the grid, and addressing challenges in hard-to-abate sectors like long-haul transport and heavy industries. This paper navigates through electrolysis variants, technological challenges, and the crucial association between electrolytic hydrogen production and renewable energy sources (RESs). Energy consumption aspects are scrutinized, highlighting the need for optimization strategies to enhance efficiency. This paper systematically addresses electrolysis fundamentals, technologies, scaling issues, and the nexus with energy sources. It emphasizes the transformative potential of electrolytic hydrogen in the broader energy landscape, underscoring its role in shaping a sustainable future. Through a systematic analysis, this study bridges the gap between detailed technological insights and the larger energy system context, offering a holistic perspective. This paper concludes by summarizing key findings, showcasing the prospects, challenges, and opportunities associated with hydrogen production via water electrolysis for the energy transition.

Suggested Citation

  • Alessandro Franco & Caterina Giovannini, 2023. "Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and Perspectives," Sustainability, MDPI, vol. 15(24), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16917-:d:1301781
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eugenio Giacomazzi & Guido Troiani & Antonio Di Nardo & Giorgio Calchetti & Donato Cecere & Giuseppe Messina & Simone Carpenella, 2023. "Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition," Energies, MDPI, vol. 16(20), pages 1-30, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Luis Monroy-Morales & Rafael Peña-Alzola & David Campos-Gaona & Olimpo Anaya-Lara, 2024. "Control Structures for Combined H 2 /Electricity from Offshore Wind Turbines," Energies, MDPI, vol. 17(21), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khusniddin Alikulov & Zarif Aminov & La Hoang Anh & Tran Dang Xuan & Wookyung Kim, 2024. "Comparative Technical and Economic Analyses of Hydrogen-Based Steel and Power Sectors," Energies, MDPI, vol. 17(5), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16917-:d:1301781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.