IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5353-d1508140.html
   My bibliography  Save this article

Control Structures for Combined H 2 /Electricity from Offshore Wind Turbines

Author

Listed:
  • José Luis Monroy-Morales

    (Graduate Program and Research in Electrical Engineering, TecNM/Instituto Tecnológico de Morelia, Av Tecnológico, No. 1500, Morelia C.P. 58120, Mexico)

  • Rafael Peña-Alzola

    (Electronic and Electrical Engineering, University of Strathclyde, 204 George St., Glasgow G1 1XW, UK)

  • David Campos-Gaona

    (Electronic and Electrical Engineering, University of Strathclyde, 204 George St., Glasgow G1 1XW, UK)

  • Olimpo Anaya-Lara

    (Electronic and Electrical Engineering, University of Strathclyde, 204 George St., Glasgow G1 1XW, UK)

Abstract

Wind energy proves to be a highly favourable choice for electricity generation due to its clean and renewable nature, and is playing a significant role in reducing global greenhouse gas emissions. Offshore wind turbine systems have gained widespread popularity as they can capitalise on elevated and consistent wind speeds surpassing those found in onshore locations, resulting in increased energy efficiency. Furthermore, offshore wind power possesses the potential to emerge as a significant electricity source for the production of green hydrogen. As water electrolysis technology for hydrogen production continues to advance, utilizing offshore wind power for hydrogen generation is becoming more economically viable and practical. Offshore wind power with higher wind speeds in combination with efficient control structures presents an attractive option for electricity generation and hydrogen co-production. This paper aims to present and evaluate four different production structures for combined H 2 /energy generation from offshore wind turbines. Previous research studies in this area often overlook control structures and lack information on power converter operations. In contrast, this article studies control structures that enable proper functionality and ensure adequate interoperability, enhancing the reliability of renewable energy integration. Each structure, including both wind turbines and electrolyser, is described in detail, along with the corresponding controllers. Simulation results are presented for each structure and controller to demonstrate their effective operation.

Suggested Citation

  • José Luis Monroy-Morales & Rafael Peña-Alzola & David Campos-Gaona & Olimpo Anaya-Lara, 2024. "Control Structures for Combined H 2 /Electricity from Offshore Wind Turbines," Energies, MDPI, vol. 17(21), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5353-:d:1508140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5353/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5353/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernández-González, Raquel & Puime-Guillén, Félix & Panait, Mirela, 2022. "Multilevel governance, PV solar energy, and entrepreneurship: the generation of green hydrogen as a fuel of renewable origin," Utilities Policy, Elsevier, vol. 79(C).
    2. Alessandro Franco & Caterina Giovannini, 2023. "Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and Perspectives," Sustainability, MDPI, vol. 15(24), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adela Bâra & Simona-Vasilica Oprea & Niculae Oprea, 2023. "How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    2. Oleksandr Beshta & Dariusz Cichoń & Oleksandr Beshta & Taras Khalaimov & Edgar Cáceres Cabana, 2023. "Analysis of the Use of Rational Electric Vehicle Battery Design as an Example of the Introduction of the Fit for 55 Package in the Real Estate Market," Energies, MDPI, vol. 16(24), pages 1-10, December.
    3. Arturo Vallejos-Romero & Minerva Cordoves-Sánchez & César Cisternas & Felipe Sáez-Ardura & Ignacio Rodríguez & Antonio Aledo & Álex Boso & Jordi Prades & Boris Álvarez, 2022. "Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    4. Adela Bâra & Simona‐Vasilica Oprea, 2024. "Embedding the weather prediction errors (WPE) into the photovoltaic (PV) forecasting method using deep learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1173-1198, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5353-:d:1508140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.