IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16853-d1300346.html
   My bibliography  Save this article

Carbon Storage Patterns and Landscape Sustainability in Northeast Portugal: A Digital Mapping Approach

Author

Listed:
  • Matheus B. Patrício

    (Advanced Science Research Centre, University of A Coruña, Elviña Campus, 15071 A Coruña, Spain)

  • Marcos Lado

    (Advanced Science Research Centre, University of A Coruña, Elviña Campus, 15071 A Coruña, Spain)

  • Tomás de Figueiredo

    (Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
    Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal)

  • João C. Azevedo

    (Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
    Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal)

  • Paulo A. A. Bueno

    (Federal Technological University of Paraná, Campo Mourão Campus, Campo Mourão 87301-899, Brazil)

  • Felícia Fonseca

    (Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
    Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal)

Abstract

This study investigated the impact of regional land abandonment in northeast Portugal. It specifically focused on carbon sequestration opportunities in the Upper Sabor River Watershed, situated in the northeast of Portugal, amidst agricultural land abandonment. The study involved mapping the distribution of soil organic carbon (SOC) across four soil layers (0–5 cm, 5–10 cm, 10–20 cm, and 20–30 cm) at 120 sampling points. The quantification of SOC storage (measured in Mg C ha −1 ) allowed for an analysis of its relationship with various landscape characteristics, including elevation, land use and land cover (LULC), normalized difference vegetation index (NDVI), modified soil-adjusted vegetation index (MSAVI), topographic wetness index (TWI), and erosion risk (ER). Six statistical tests were employed, including multivariate approaches like Cubist and Random Forest, within different scenarios to assess carbon distribution within the watershed’s soils. These modeling results were then utilized to propose strategies aimed at enhancing soil carbon storage. Notably, a significant discrepancy was observed in the carbon content between areas at higher elevations (>1000 m) and those at lower elevations (<800 m). Additionally, the study found that the amount of carbon stored in agricultural soils was often significantly lower than in other land use categories, including forests, mountain herbaceous vegetation, pasture, and shrub communities. Analyzing bi- and multivariate scenarios, it was determined that the scenario with the greatest number of independent variables (set 6) yielded the lowest RMSE (root mean squared error), serving as a key indicator for evaluating predicted values against observed values. However, it is important to note that the independent variables used in set 4 (elevation, LULC, and NDVI) had reasonably similar values. Ultimately, the spatialization of the model from scenario 6 provided actionable insights for soil carbon conservation and enhancement across three distinct elevation levels.

Suggested Citation

  • Matheus B. Patrício & Marcos Lado & Tomás de Figueiredo & João C. Azevedo & Paulo A. A. Bueno & Felícia Fonseca, 2023. "Carbon Storage Patterns and Landscape Sustainability in Northeast Portugal: A Digital Mapping Approach," Sustainability, MDPI, vol. 15(24), pages 1-27, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16853-:d:1300346
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16853/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16853/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinghui Wang & Yuman Sun & Weiwei Jia & Hezhi Wang & Wancai Zhu, 2023. "Coupling of Forest Carbon Densities with Landscape Patterns and Climate Change in the Lesser Khingan Mountains, Northeast China," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    2. Markus Reichstein & Michael Bahn & Philippe Ciais & Dorothea Frank & Miguel D. Mahecha & Sonia I. Seneviratne & Jakob Zscheischler & Christian Beer & Nina Buchmann & David C. Frank & Dario Papale & An, 2013. "Climate extremes and the carbon cycle," Nature, Nature, vol. 500(7462), pages 287-295, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huicai Yang & Shuqin Zhao & Zhanfei Qin & Zhiguo Qi & Xinying Jiao & Zhen Li, 2024. "Differentiation of Carbon Sink Enhancement Potential in the Beijing–Tianjin–Hebei Region of China," Land, MDPI, vol. 13(3), pages 1-15, March.
    2. Yujin Li & Juying Jiao & Zhijie Wang & Binting Cao & Yanhong Wei & Shu Hu, 2016. "Effects of Revegetation on Soil Organic Carbon Storage and Erosion-Induced Carbon Loss under Extreme Rainstorms in the Hill and Gully Region of the Loess Plateau," IJERPH, MDPI, vol. 13(5), pages 1-15, April.
    3. Simon Besnard & Nuno Carvalhais & M Altaf Arain & Andrew Black & Benjamin Brede & Nina Buchmann & Jiquan Chen & Jan G P W Clevers & Loïc P Dutrieux & Fabian Gans & Martin Herold & Martin Jung & Yoshik, 2019. "Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-22, February.
    4. Zbigniew W. Kundzewicz & Adam Choryński & Janusz Olejnik & Hans J. Schellnhuber & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Climate Change Science and Policy—A Guided Tour across the Space of Attitudes and Outcomes," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    5. Zheng Fu & Philippe Ciais & I. Colin Prentice & Pierre Gentine & David Makowski & Ana Bastos & Xiangzhong Luo & Julia K. Green & Paul C. Stoy & Hui Yang & Tomohiro Hajima, 2022. "Atmospheric dryness reduces photosynthesis along a large range of soil water deficits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Meenakshi Sharma & Rajesh Kaushal & Prashant Kaushik & Seeram Ramakrishna, 2021. "Carbon Farming: Prospects and Challenges," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    8. Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
    9. Yuhong Zhao & Ruirui Liu & Zhansheng Liu & Liang Liu & Jingjing Wang & Wenxiang Liu, 2023. "A Review of Macroscopic Carbon Emission Prediction Model Based on Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    10. Lopes, António M. & Machado, J.A. Tenreiro, 2017. "Computational comparison and pattern visualization of forest fires," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 407-413.
    11. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    14. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    16. Litong Chen & Dan F B Flynn & Xin Jing & Peter Kühn & Thomas Scholten & Jin-Sheng He, 2015. "A Comparison of Two Methods for Quantifying Soil Organic Carbon of Alpine Grasslands on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    17. Gbenga Abayomi Afuye & Ahmed Mukalazi Kalumba & Israel Ropo Orimoloye, 2021. "Characterisation of Vegetation Response to Climate Change: A Review," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    18. Humphreys, John M. & Srygley, Robert B. & Lawton, Douglas & Hudson, Amy R. & Branson, David H., 2022. "Grasshoppers exhibit asynchrony and spatial non-stationarity in response to the El Niño/Southern and Pacific Decadal Oscillations," Ecological Modelling, Elsevier, vol. 471(C).
    19. Jing Wang & Xuesong Wang & Fenli Zheng & Hanmei Wei & Miaomiao Zhao & Jianyu Jiao, 2023. "Ecoenzymatic Stoichiometry Reveals Microbial Carbon and Phosphorus Limitations under Elevated CO 2 , Warming and Drought at Different Winter Wheat Growth Stages," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
    20. Aysan Badraghi & Beáta Novotná & Jan Frouz & Koloman Krištof & Martin Trakovický & Martin Juriga & Branislav Chvila & Leonardo Montagnani, 2023. "Temporal Dynamics of CO 2 Fluxes over a Non-Irrigated Vineyard," Land, MDPI, vol. 12(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16853-:d:1300346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.