IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16564-d1294468.html
   My bibliography  Save this article

Carbon Dioxide Emission Reduction-Oriented Optimal Control of Traffic Signals in Mixed Traffic Flow Based on Deep Reinforcement Learning

Author

Listed:
  • Zhaowei Wang

    (College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Le Xu

    (College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Jianxiao Ma

    (College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

Abstract

To alleviate intersection traffic congestion and reduce carbon emissions at intersections, research on exploiting reinforcement learning for intersection signal control has become a frontier topic in the field of intelligent transportation. This study utilizes a deep reinforcement learning algorithm based on the D3QN (dueling double deep Q network) to achieve adaptive control of signal timings. Under a mixed traffic environment with connected and automated vehicles (CAVs) and human-driven vehicles (HDVs), this study constructs a reward function (Reward—CO 2 Reduction) to minimize vehicle waiting time and carbon dioxide emissions at the intersection. Additionally, to account for the spatiotemporal distribution characteristics of traffic flow, an adaptive-phase action space and a fixed-phase action space are designed to optimize action selections. The proposed algorithm is validated in a SUMO simulation with different traffic volumes and CAV penetration rates. The experimental results are compared with other control strategies like Webster’s method (fixed-time control). The analysis shows that the proposed model can effectively reduce carbon dioxide emissions when the traffic volume is low or medium. As the penetration rate of CAVs increases, the average carbon dioxide emissions and waiting time can be further reduced with the proposed model. The significance of this study lies in its dual achievement: by presenting a flexible strategy that not only reduces the environmental impact by lowering carbon dioxide emissions but also enhances traffic efficiency, it provides a tangible example of the advancement of green intelligent transportation systems.

Suggested Citation

  • Zhaowei Wang & Le Xu & Jianxiao Ma, 2023. "Carbon Dioxide Emission Reduction-Oriented Optimal Control of Traffic Signals in Mixed Traffic Flow Based on Deep Reinforcement Learning," Sustainability, MDPI, vol. 15(24), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16564-:d:1294468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, S.C. & Li, M. & Lin, Y. & Tang, T.Q., 2014. "Electric vehicle’s electricity consumption on a road with different slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ku, Donggyun & Choi, Minje & Yoo, Nakyoung & Shin, Seungheon & Lee, Seungjae, 2021. "A new algorithm for eco-friendly path guidance focused on electric vehicles," Energy, Elsevier, vol. 233(C).
    2. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    3. Junyan Han & Xiaoyuan Wang & Gang Wang, 2022. "Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review," Sustainability, MDPI, vol. 14(13), pages 1-27, July.
    4. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    5. Liu, Yang & Zhang, Qi & Lyu, Cheng & Liu, Zhiyuan, 2021. "Modelling the energy consumption of electric vehicles under uncertain and small data conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 313-328.
    6. Zhang, Hao & Cai, Guixin, 2020. "Subsidy strategy on new-energy vehicle based on incomplete information: A Case in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2021. "Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving," Applied Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16564-:d:1294468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.