Rock Burst Intensity-Grade Prediction Based on Comprehensive Weighting Method and Bayesian Optimization Algorithm–Improved-Support Vector Machine Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Weizhang Liang & Asli Sari & Guoyan Zhao & Stephen D. McKinnon & Hao Wu, 2020. "Short-term rockburst risk prediction using ensemble learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1923-1946, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ying Chen & Qi Da & Weizhang Liang & Peng Xiao & Bing Dai & Guoyan Zhao, 2022. "Bagged Ensemble of Gaussian Process Classifiers for Assessing Rockburst Damage Potential with an Imbalanced Dataset," Mathematics, MDPI, vol. 10(18), pages 1-22, September.
- Leilei Liu & Guoyan Zhao & Weizhang Liang, 2023. "Slope Stability Prediction Using k -NN-Based Optimum-Path Forest Approach," Mathematics, MDPI, vol. 11(14), pages 1-31, July.
- Diyuan Li & Zida Liu & Danial Jahed Armaghani & Peng Xiao & Jian Zhou, 2022. "Novel Ensemble Tree Solution for Rockburst Prediction Using Deep Forest," Mathematics, MDPI, vol. 10(5), pages 1-23, March.
- Keyou Shi & Yong Liu & Weizhang Liang, 2022. "An Extended ORESTE Approach for Evaluating Rockburst Risk under Uncertain Environments," Mathematics, MDPI, vol. 10(10), pages 1-20, May.
- Jie Li & Helin Fu & Kaixun Hu & Wei Chen, 2023. "Data Preprocessing and Machine Learning Modeling for Rockburst Assessment," Sustainability, MDPI, vol. 15(18), pages 1-32, September.
- Guoyan Zhao & Meng Wang & Weizhang Liang, 2022. "A Comparative Study of SSA-BPNN, SSA-ENN, and SSA-SVR Models for Predicting the Thickness of an Excavation Damaged Zone around the Roadway in Rock," Mathematics, MDPI, vol. 10(8), pages 1-26, April.
More about this item
Keywords
prediction of rock burst intensity grade; T-SNE dimension reduction; comprehensive empowerment; Bayesian optimization algorithm; support vector machine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15880-:d:1278963. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.