IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14995-d1261922.html
   My bibliography  Save this article

Technical-Economic Analysis of Energy Efficiency Solutions for the Industrial Steam System of a Natural Gas Processing Plant

Author

Listed:
  • Mohsen Salimi

    (Renewable Energy Research Department, Niroo Research Institute (NRI), Tehran 14686-13113, Iran)

  • Majid Amidpour

    (Department of Mechanical Engineering, Energy Systems Division, K. N. Toosi University of Technology, No. 19, Pardis Street, Molla Sadra Ave., Vanak Sq., Tehran P.O. Box 19395-1999, Iran)

  • Mohammad Ali Moradi

    (Department of Mechanical Engineering, Energy Systems Division, K. N. Toosi University of Technology, No. 19, Pardis Street, Molla Sadra Ave., Vanak Sq., Tehran P.O. Box 19395-1999, Iran)

  • Marjan Hajivand

    (Niroo Research Institute (NRI), Tehran 14686-13113, Iran)

  • Ebrahim Siahkamari

    (South Pars Gas Complex (SPGC), Phases 1, Assaluyeh P.O. Box 75391-311, Iran)

  • Mehrzad Shams

    (Department of Mechanical Engineering, Energy Systems Division, K. N. Toosi University of Technology, No. 19, Pardis Street, Molla Sadra Ave., Vanak Sq., Tehran P.O. Box 19395-1999, Iran)

Abstract

Steam, which is primarily employed as a heat transfer medium in process plants, is one of the most widely utilized energy carriers in the industrial sector. One of the factors that affects the cost of steam is how well the condensate collection, steam supply, and return systems of industrial steam systems perform. In a case study, the steam systems of a natural gas processing plant were simulated. The amount of demineralized water loss and, consequently, the identification of various solutions to improve the system were analyzed. The whole steam system was simulated using the MEASUR software platform (v 1.2), and by placing the operational information of the steam system, it was possible to create a baseline for the system, model saving solutions, and finally, provide a technical and economic evaluation of the solutions. Due to the high loss of steam condensate in the SRU steam system (more than 3000 kg per hour), solutions to improve the energy efficiency of the SRU steam system in the form of a maximum recovery of steam condensate (replacement of defective steam traps, redesign of the low-pressure condensate collection network, and high-pressure waste condensate collection) were evaluated with two price assumptions of current energy prices and real prices (the energy saving value of one cubic meter of natural gas is equal to 13 cents). The results show that, for current prices, the investment return period will be between 11.8 and 3.8 months. Moreover, in the main steam system of the refinery (unit 9200), there are three solutions: replacing and repairing defective steam traps, installing an expansion turbine instead of a steam pressure relief valve (PRV), and other solutions (including increasing boiler efficiency, automatic control of the boiler, and energy recovery boiler blowdown) under two price assumptions, the current and real prices of natural gas and demineralized water, were evaluated, and the modeling results show that the investment return period for each of the above solutions at the current prices is 10.2, 186, and 13.3, respectively. The investment return period is based on assuming real fuel and BFW prices are equal to 2.0, 37.6, and 1.7, respectively.

Suggested Citation

  • Mohsen Salimi & Majid Amidpour & Mohammad Ali Moradi & Marjan Hajivand & Ebrahim Siahkamari & Mehrzad Shams, 2023. "Technical-Economic Analysis of Energy Efficiency Solutions for the Industrial Steam System of a Natural Gas Processing Plant," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14995-:d:1261922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thollander, Patrik & Danestig, Maria & Rohdin, Patrik, 2007. "Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs," Energy Policy, Elsevier, vol. 35(11), pages 5774-5783, November.
    2. Therkelsen, Peter & McKane, Aimee, 2013. "Implementation and rejection of industrial steam system energy efficiency measures," Energy Policy, Elsevier, vol. 57(C), pages 318-328.
    3. Sovacool, Benjamin K., 2009. "The cultural barriers to renewable energy and energy efficiency in the United States," Technology in Society, Elsevier, vol. 31(4), pages 365-373.
    4. Umstattd, Ryan J., 2009. "Future energy efficiency improvements within the US department of defense: Incentives and barriers," Energy Policy, Elsevier, vol. 37(8), pages 2870-2880, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Therkelsen, Peter & McKane, Aimee, 2013. "Implementation and rejection of industrial steam system energy efficiency measures," Energy Policy, Elsevier, vol. 57(C), pages 318-328.
    2. Vitaliy Roud & Thomas Wolfgang Thurner, 2018. "The Influence of State‐Ownership on Eco‐Innovations in Russian Manufacturing Firms," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1213-1227, October.
    3. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    4. Thollander, Patrik & Kimura, Osamu & Wakabayashi, Masayo & Rohdin, Patrik, 2015. "A review of industrial energy and climate policies in Japan and Sweden with emphasis towards SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 504-512.
    5. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    6. Violeta Mihaela Dincă & Mihail Busu & Zoltan Nagy-Bege, 2022. "Determinants with Impact on Romanian Consumers’ Energy-Saving Habits," Energies, MDPI, vol. 15(11), pages 1-18, June.
    7. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    8. Schlomann, Barbara & Schleich, Joachim, 2015. "Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1127-1133.
    9. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    10. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.
    11. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).
    13. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    14. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    15. Lawrence, Akvile & Karlsson, Magnus & Nehler, Therese & Thollander, Patrik, 2019. "Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry," Applied Energy, Elsevier, vol. 240(C), pages 499-512.
    16. Gabriela O. Chiciudean & Rezhen Harun & Felix H. Arion & Daniel I. Chiciudean & Camelia F. Oroian & Iulia C. Muresan, 2018. "A Critical Approach on Sustainable Renewable Energy Sources in Rural Area: Evidence from North-West Region of Romania," Energies, MDPI, vol. 11(9), pages 1-15, August.
    17. Antunes, Jorge Junio Moreira & Neves, Juliana Campos & Elmor, Larissa Rosa Carneiro & Araujo, Michel Fontaine Reis De & Wanke, Peter Fernandes & Tan, Yong, 2023. "A new perspective on the U.S. energy efficiency: The political context," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    18. Idoko Ahmed Itodo & Shahrzad Safaeimanesh & Festus Victor Bekun, 2017. "Energy Use and Growth of Manufacturing Sector: Evidence from Turkey," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 3(1), pages 88-96, March.
    19. Hanaa Feleafel & Jovana Radulovic & Michel Leseure, 2024. "Should We Have Selfish Microgrids?," Energies, MDPI, vol. 17(16), pages 1-23, August.
    20. Justyna Chodkowska-Miszczuk & Jadwiga Biegańska & Stefania Środa-Murawska & Elżbieta Grzelak-Kostulska & Krzysztof Rogatka, 2016. "European Union funds in the development of renewable energy sources in Poland in the context of the cohesion policy," Energy & Environment, , vol. 27(6-7), pages 713-725, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14995-:d:1261922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.