IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14801-d1258412.html
   My bibliography  Save this article

Research on a Multi-Species Combined Habitat Suitability Assessment Method for Various Fish Species

Author

Listed:
  • Yongzeng Huang

    (Hydraulic Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China
    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)

  • Xiaogang Wang

    (Hydraulic Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • Hongze Li

    (Hydraulic Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • Fazhan Chen

    (Hydraulic Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • Kaixiao Chen

    (Hydraulic Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • Zhe Wang

    (Hydraulic Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • Biao Wang

    (Hydraulic Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China
    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)

Abstract

To reveal the evolution of habitat distribution for multiple fish species in the lower reaches of the Gongzui Hydropower Station, this study conducted a catch survey to determine the target species of the reach. Based on their suitability curves, a combined suitability assessment model for multiple fish species was constructed. The reliability of the model was verified by combining acoustic observations of flow fields and fish distribution in specific flow conditions. A two-dimensional hydrodynamic model was coupled to quantitatively analyze the distribution characteristics of fish habitat patches under different flow conditions. The results indicate that the correlation coefficient between the multi-species comprehensive suitability index and the number of fish is 0.676, which indicates that the model can better evaluate the distribution of multiple fish habitats in the study river reach; the weighted usable area (WUA) decreased as the discharge increased; from low flow condition (<800 m 3 /s) to high flow condition (>2000 m 3 /s), the patch area of suitable habitat decreased from 11,424 m 2 to 1268 m 2 , and the connectivity between patches also showed a downward trend; and the habitat shifted to the near-shore area of the downstream wider and shallower section, which was highly correlated with the migration process of low-depth and low-velocity areas. The model proposed in this study can establish a rapid response between the suitable habitat distribution of multiple fish species and discharge conditions, which can provide a research method for quantitative evaluation of multi-species habitats in river, and make a significant contribution to the sustainable development of riverine fisheries resources and river water ecology.

Suggested Citation

  • Yongzeng Huang & Xiaogang Wang & Hongze Li & Fazhan Chen & Kaixiao Chen & Zhe Wang & Biao Wang, 2023. "Research on a Multi-Species Combined Habitat Suitability Assessment Method for Various Fish Species," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14801-:d:1258412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mischke, Peggy & Karlsson, Kenneth B., 2014. "Modelling tools to evaluate China's future energy system – A review of the Chinese perspective," Energy, Elsevier, vol. 69(C), pages 132-143.
    2. Nagaya, Takayuki & Shiraishi, Yoshiki & Onitsuka, Kouki & Higashino, Makoto & Takami, Tohru & Otsuka, Noriharu & Akiyama, Juichiro & Ozeki, Hiroaki, 2008. "Evaluation of suitable hydraulic conditions for spawning of ayu with horizontal 2D numerical simulation and PHABSIM," Ecological Modelling, Elsevier, vol. 215(1), pages 133-143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    2. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    3. Ian Parry & Baoping Shang & Nate Vernon & Philippe Wingender & Tarun Narasimhan, 2020. "Evaluating policies to implement the Paris Agreement: a toolkit with application to China," Chapters, in: Graciela Chichilnisky & Armon Rezai (ed.), Handbook on the Economics of Climate Change, chapter 2, pages 32-67, Edward Elgar Publishing.
    4. Liu, Weifeng & McKibbin, Warwick J. & Morris, Adele C. & Wilcoxen, Peter J., 2020. "Global economic and environmental outcomes of the Paris Agreement," Energy Economics, Elsevier, vol. 90(C).
    5. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    6. Yi, Yujun & Wang, Zhaoyin & Yang, Zhifeng, 2010. "Two-dimensional habitat modeling of Chinese sturgeon spawning sites," Ecological Modelling, Elsevier, vol. 221(5), pages 864-875.
    7. Guo, Zheng & Ma, Linwei & Liu, Pei & Jones, Ian & Li, Zheng, 2016. "A multi-regional modelling and optimization approach to China's power generation and transmission planning," Energy, Elsevier, vol. 116(P2), pages 1348-1359.
    8. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Qian Zhang & Christopher Kennedy & Tao Wang & Wendong Wei & Jiashuo Li & Lei Shi, 2020. "Transforming the coal and steel nexus for China's eco‐civilization: Interplay between rail and energy infrastructure," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1352-1363, December.
    10. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
    11. Burke, Paul J. & Liao, Hua, 2015. "Is the price elasticity of demand for coal in China increasing?," China Economic Review, Elsevier, vol. 36(C), pages 309-322.
    12. Chapman, Andrew J. & Itaoka, Kenshi, 2018. "Energy transition to a future low-carbon energy society in Japan's liberalizing electricity market: Precedents, policies and factors of successful transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2019-2027.
    13. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    14. Musonye, Xavier S. & Davíðsdóttir, Brynhildur & Kristjánsson, Ragnar & Ásgeirsson, Eyjólfur I. & Stefánsson, Hlynur, 2020. "Integrated energy systems’ modeling studies for sub-Saharan Africa: A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    15. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Synergy of air pollutants and greenhouse gas emissions of Chinese industries: A critical assessment of energy models," Energy, Elsevier, vol. 93(P2), pages 2436-2450.
    16. Ian W.H. Parry & Baoping Shang & Mr. Philippe Wingender & Nate Vernon-Lin & Tarun Narasimhan, 2016. "Climate Mitigation in China: Which Policies Are Most Effective?," IMF Working Papers 2016/148, International Monetary Fund.
    17. Wang, Fei & Lin, Binliang, 2013. "Modelling habitat suitability for fish in the fluvial and lacustrine regions of a new Eco-City," Ecological Modelling, Elsevier, vol. 267(C), pages 115-126.
    18. Augutis, Juozas & Krikštolaitis, Ričardas & Martišauskas, Linas & Pečiulytė, Sigita & Žutautaitė, Inga, 2017. "Integrated energy security assessment," Energy, Elsevier, vol. 138(C), pages 890-901.
    19. Yao, Weiwei, 2021. "Ecohydraulic tools for aquatic fauna habitat and population status assessment, analysis and monitoring aimed at promoting integrated river management," Ecological Modelling, Elsevier, vol. 456(C).
    20. Höffner, Dorian & Glombik, Sebastian, 2024. "Energy system planning and analysis software—A comprehensive meta-review with special attention to urban energy systems and district heating," Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14801-:d:1258412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.