IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14241-d1248248.html
   My bibliography  Save this article

A Comprehensive Study of the Impact of Waste Fires on the Environment and Health

Author

Listed:
  • Rakshit Jakhar

    (Faculty of Energy and Fuels, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Lucyna Samek

    (Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Katarzyna Styszko

    (Faculty of Energy and Fuels, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

The escalating crisis of environmental degradation, with waste fires acting as a potent accelerant, has reached a critical juncture that demands immediate attention. This crisis disproportionately affects developing and low-income nations, where unregulated disposal and incineration in open areas have become rampant. These open waste fires serve as hotbeds for many environmental hazards ranging from air and water pollution to soil degradation. In addition, they contribute to the growing threat of marine litter and are a significant source of greenhouse gas emissions, exacerbating global climate change. Beyond their environmental toll, waste fires present an immediate and long-term threat to human health, causing respiratory problems and skin conditions and potentially leading to more serious health outcomes, such as cancer. Their impacts are multidimensional, affecting not only the environment but also pose severe health risks to communities, especially those near waste-burning sites. In this technologically advanced era, the application of artificial intelligence (AI), Machine Learning (ML), and deep learning technologies has the potential to revolutionize waste fire management. These technologies can significantly improve the accuracy of identifying, monitoring, and ultimately mitigating waste fires, making them indispensable tools in the fight against this complex issue. This article offers a comprehensive and in-depth examination of the historical evolution of waste fires, with the aim of shedding light on the critical factors that contribute to their occurrence. We explore the scientific mechanisms by which waste fires lead to environmental pollution and public health crises, providing a holistic understanding of their far-reaching impacts. We present an overview of significant research initiatives, policy interventions, and technological solutions that have been proposed or implemented by authoritative bodies around the world. By synthesizing existing research and offering new insights, this paper aims to facilitate a deeper understanding of the intricacies of waste fires and spur innovative solutions for their sustainable management and eventual eradication. Therefore, this article focuses on environmental and human health problems while outlining the comprehensive approach and potential contributions to solving this critical issue.

Suggested Citation

  • Rakshit Jakhar & Lucyna Samek & Katarzyna Styszko, 2023. "A Comprehensive Study of the Impact of Waste Fires on the Environment and Health," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14241-:d:1248248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walter Mazzucco & Claudio Costantino & Vincenzo Restivo & Davide Alba & Claudia Marotta & Elisa Tavormina & Achille Cernigliaro & Maurizio Macaluso & Rosanna Cusimano & Rosario Grammauta & Fabio Tramu, 2020. "The Management of Health Hazards Related to Municipal Solid Waste on Fire in Europe: An Environmental Justice Issue?," IJERPH, MDPI, vol. 17(18), pages 1-15, September.
    2. S. Bhuvaneshwari & Hiroshan Hettiarachchi & Jay N. Meegoda, 2019. "Crop Residue Burning in India: Policy Challenges and Potential Solutions," IJERPH, MDPI, vol. 16(5), pages 1-19, March.
    3. Navarro Ferronato & Vincenzo Torretta, 2019. "Waste Mismanagement in Developing Countries: A Review of Global Issues," IJERPH, MDPI, vol. 16(6), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Zhenghui & Alshehri, Khaled & Li, Yuan & Qian, Hang & Sapsford, Devin & Cleall, Peter & Harbottle, Michael, 2022. "Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Leslier Valenzuela-Fernández & Manuel Escobar-Farfán, 2022. "Zero-Waste Management and Sustainable Consumption: A Comprehensive Bibliometric Mapping Analysis," Sustainability, MDPI, vol. 14(23), pages 1-24, December.
    3. Asif Iqbal & Abdullah Yasar & Abdul-Sattar Nizami & Rafia Haider & Faiza Sharif & Imran Ali Sultan & Amtul Bari Tabinda & Aman Anwer Kedwaii & Muhammad Murtaza Chaudhary, 2022. "Municipal Solid Waste Collection and Haulage Modeling Design for Lahore, Pakistan: Transition toward Sustainability and Circular Economy," Sustainability, MDPI, vol. 14(23), pages 1-39, December.
    4. Giovanni Vinti & Valerie Bauza & Thomas Clasen & Kate Medlicott & Terry Tudor & Christian Zurbrügg & Mentore Vaccari, 2021. "Municipal Solid Waste Management and Adverse Health Outcomes: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-26, April.
    5. Guizhi Qi & Borui Zhang & Biao Tian & Rui Yang & Andy Baker & Pan Wu & Shouyang He, 2023. "Characterization of Dissolved Organic Matter from Agricultural and Livestock Effluents: Implications for Water Quality Monitoring," IJERPH, MDPI, vol. 20(6), pages 1-14, March.
    6. Sławomir Kasiński & Marcin Dębowski & Gabriela Tylus & Marcin Rudnicki, 2022. "Characteristics of Wastewater from Municipal Waste Bio-Drying and Its Impact on Aquatic Environment—Long-Term Research on a Technical Scale," Energies, MDPI, vol. 15(24), pages 1-18, December.
    7. Li Jiang & Yanru Zhang & Yi Zhu & Zhongliang Huang & Jing Huang & Zijian Wu & Xuan Zhang & Xiaoli Qin & Hui Li, 2023. "Effects of Magnetic Biochar Addition on Mesophilic Anaerobic Digestion of Sewage Sludge," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    8. Tamang, Phurba & Tyagi, Vinay Kumar & Gunjyal, Neelam & Rahmani, Ali Mohammad & Singh, Rajesh & Kumar, Pradeep & Ahmed, Banafsha & Tyagi, Pooja & Banu, Rajesh & Varjani, Sunita & Kazmi, A.A., 2023. "Free nitrous acid (FNA) pretreatment enhances biomethanation of lignocellulosic agro-waste (wheat straw)," Energy, Elsevier, vol. 264(C).
    9. Jatau Ramond Yohanna, 2023. "Effluent Pollution in Custodial Centres and its Environs in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(2), pages 1341-1352, February.
    10. Victor Fredrick & Vandu Umaru Lazarus & Ishaku Yahaya & Ibrahim Hyedma Bwala & Ajanson, Samuel Sule & Buhari Isa Uba, 2023. "Impact of Public Solid Waste Disposal Dump Sites: A Threat to Residence of Yelwa Tsakani, Bauchi," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(2), pages 507-522, February.
    11. Vladimír Frišták & Diana Bošanská & Vladimír Turčan & Martin Pipíška & Christoph Pfeifer & Gerhard Soja, 2022. "Relevance of Pyrolysis Products Derived from Sewage Sludge for Soil Applications," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    12. Anna Mazzi & Michela Sciarrone & Roberto Raga, 2022. "Environmental Performance of Semi-Aerobic Landfill by Means of Life Cycle Assessment Modeling," Energies, MDPI, vol. 15(17), pages 1-17, August.
    13. Yijia Wang & Senwei Huang & Jia Liu, 2023. "Research on the Rural Environmental Governance and Interaction Effects of Farmers under the Perspective of Circular Economy—Evidence from Three Provinces of China," Sustainability, MDPI, vol. 15(17), pages 1-20, September.
    14. Sabah Mariyam & Logan Cochrane & Shifa Zuhara & Gordon McKay, 2022. "Waste Management in Qatar: A Systematic Literature Review and Recommendations for System Strengthening," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    15. Mohd Faiz Ibrahim & Rozita Hod & Haidar Rizal Toha & Azmawati Mohammed Nawi & Idayu Badilla Idris & Hanizah Mohd Yusoff & Mazrura Sahani, 2021. "The Impacts of Illegal Toxic Waste Dumping on Children’s Health: A Review and Case Study from Pasir Gudang, Malaysia," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    16. Marco Bardus & May A. Massoud, 2022. "Predicting the Intention to Sort Waste at Home in Rural Communities in Lebanon: An Application of the Theory of Planned Behaviour," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
    17. Alessio Conti & Elena Viottini & Rosanna Irene Comoretto & Chiara Piovan & Barbara Martin & Beatrice Albanesi & Marco Clari & Valerio Dimonte & Sara Campagna, 2024. "The Effectiveness of Educational Interventions in Improving Waste Management Knowledge, Attitudes, and Practices among Healthcare Workers: A Systematic Review and Meta-Analysis," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
    18. Sabbir Ahmed & Sameera Mubarak & Jia Tina Du & Santoso Wibowo, 2022. "Forecasting the Status of Municipal Waste in Smart Bins Using Deep Learning," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    19. Hang Yin & Yixiong Huang & Kuiming Wang, 2021. "How Do Environmental Concerns and Governance Performance Affect Public Environmental Participation: A Case Study of Waste Sorting in Urban China," IJERPH, MDPI, vol. 18(19), pages 1-16, September.
    20. Saowanee Wijitkosum, 2023. "Repurposing Disposable Bamboo Chopsticks Waste as Biochar for Agronomical Application," Energies, MDPI, vol. 16(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14241-:d:1248248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.