IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13737-d1240183.html
   My bibliography  Save this article

Physical, Rheological, and Permanent Deformation Behaviors of WMA-RAP Asphalt Binders

Author

Listed:
  • Kátia Aline Bohn

    (Postgraduate Program in Civil Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil)

  • Liseane Padilha Thives

    (Postgraduate Program in Civil Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil)

  • Luciano Pivoto Specht

    (Department of Transportation, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

Abstract

With the rapid global expansion of road networks, the asphalt industry faces several environmental challenges, such as material shortages, environmental concerns, escalating material costs, demand for eco-friendly materials, and the implementation of “Net Zero” policies. Given these challenges and recognizing the need to explore new solutions, this research evaluated asphalt binder samples incorporating Warm Mix Asphalt (WMA) and Reclaimed Asphalt Pavement (RAP), or WMA-RAP. The assessment focused on analyzing the physical, rheological, and permanent deformation characteristics of WMA-RAP samples containing 20%, 35%, and 50% recycled pavement. The study utilized a chemical surfactant-type WMA additive, Evotherm ® P25. The findings showed that the WMA-RAP combination resulted in increased stiffness ranging from 247% to 380% and a reduced phase angle of 16% to 26% with an increasing RAP content from 20% to 50% at T ref 20 °C and 10 Hz. Furthermore, the penetration decreased from 20% to 47%, and the softening point increased from 7% to 17%. An improvement of 2 PGHs was observed by adding 35% and 50% RAP. Additionally, WMA samples containing up to 50% RAP presented more elevated permanent deformation resistance, supporting traffic levels of 64V or 70H. WMA-RAP binders allow mixture production at lower temperatures—an amount of 30 °C less—conserving energy and decreasing the need for new aggregate materials by incorporating recycled materials, thus minimizing the environmental impact.

Suggested Citation

  • Kátia Aline Bohn & Liseane Padilha Thives & Luciano Pivoto Specht, 2023. "Physical, Rheological, and Permanent Deformation Behaviors of WMA-RAP Asphalt Binders," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13737-:d:1240183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javier Espinoza & Cristian Medina & Alejandra Calabi-Floody & Elsa Sánchez-Alonso & Gonzalo Valdés & Andrés Quiroz, 2020. "Evaluation of Reductions in Fume Emissions (VOCs and SVOCs) from Warm Mix Asphalt Incorporating Natural Zeolite and Reclaimed Asphalt Pavement for Sustainable Pavements," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    2. Kiran Sapkota & Ehsan Yaghoubi & P. L. P. Wasantha & Rudi Van Staden & Sam Fragomeni, 2023. "Mechanical Characteristics and Durability of HMA Made of Recycled Aggregates," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    3. Qing-Zhou Wang & Zhan-Di Chen & Kuo-Ping Lin & Ching-Hsin Wang, 2018. "Estimation and Analysis of Energy Conservation and Emissions Reduction Effects of Warm-Mix Crumb Rubber-Modified Asphalts during Construction Period," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
    4. Aner Martinez-Soto & Alejandra Calabi-Floody & Gonzalo Valdes-Vidal & Andrea Hucke & Camila Martinez-Toledo, 2023. "Life Cycle Assessment of Natural Zeolite-Based Warm Mix Asphalt and Reclaimed Asphalt Pavement," Sustainability, MDPI, vol. 15(2), pages 1-12, January.
    5. Kunpeng Zheng & Jian Xu & Jie Wang, 2023. "Viscoelasticity of Recycled Asphalt Mixtures with High Content Reclaimed SBS Modified Asphalt Pavement," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonardo Sierra & Felipe Araya & Víctor Yepes, 2021. "Consideration of Uncertainty and Multiple Disciplines in the Determination of Sustainable Criteria for Rural Roads Using Neutrosophic Logic," Sustainability, MDPI, vol. 13(17), pages 1-15, September.
    2. Bethania Machado Correa & Luciano Pivoto Specht & Silvio Lisboa Schuster & Pedro Orlando Borges de Almeida Júnior & Cléber Faccin & Fernando Dekeper Boeira & Deividi da Silva Pereira & Luis Alberto He, 2023. "Fatigue Performance of Recycled Asphalt Mixtures: Viscoelastic Continuum Damage Approach and Cost Analysis," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    3. Diana Movilla-Quesada & Aitor C. Raposeiras & Edgardo Guíñez & Almudena Frechilla-Alonso, 2023. "A Comparative Study of the Effect of Moisture Susceptibility on Polyethylene Terephthalate–Modified Asphalt Mixes under Different Regulatory Procedures," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    4. Ahmed Eltwati & Ramadhansyah Putra Jaya & Azman Mohamed & Euniza Jusli & Zaid Al-Saffar & Mohd Rosli Hainin & Mahmoud Enieb, 2023. "Effect of Warm Mix Asphalt (WMA) Antistripping Agent on Performance of Waste Engine Oil-Rejuvenated Asphalt Binders and Mixtures," Sustainability, MDPI, vol. 15(4), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13737-:d:1240183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.