IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13726-d1239962.html
   My bibliography  Save this article

Synergy between Electric Vehicle Manufacturers and Battery Recyclers through Technology and Innovation: A Game Theory Approach

Author

Listed:
  • Shuang Yao

    (College of Economics and Management, China Jiliang University, Hangzhou 310018, China
    Institute of Digitalization and Data Intelligence, China Jiliang University, Hangzhou 310018, China)

  • Leke Wu

    (College of Economics and Management, China Jiliang University, Hangzhou 310018, China)

  • Donghua Yu

    (Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China
    Institute of Artificial Intelligence, Shaoxing University, Shaoxing 312000, China)

Abstract

Power battery recycling (PBR) has triggered profound changes in the industrial chain of electric vehicles (EVs). The PBR innovation network provides information channels and resource conditions for enterprises, but the mechanism of its impact on the synergistic innovation benefits and sustainable development ability of EV and PBR enterprises still needs further exploration. In this paper, we collect patent data for PBR from 2012 to 2020, identify the structural characteristics of innovation networks, and construct a synergy game model for PBR technology, aiming to analyze the synergistic effect of network embedding and knowledge spillover in PBR enterprises on technological innovation. First, we find that the PBR innovation network exhibits the small-world effect, which has a double-edged sword effect on technological cooperation innovation. Second, structural holes benefits of the main body of PBR technological innovation have a significant impact on cooperation innovation behavior. Third, the enhancement of the relevance and deep complementarity of knowledge cooperation is sufficient to make up for the input cost of PBR technological cooperation innovation, with additional benefits created by the increase in the output of structural holes. However, companies tend to be more inclined toward non-cooperative innovation as the knowledge spillover effect of the innovation network increases.

Suggested Citation

  • Shuang Yao & Leke Wu & Donghua Yu, 2023. "Synergy between Electric Vehicle Manufacturers and Battery Recyclers through Technology and Innovation: A Game Theory Approach," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13726-:d:1239962
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13726/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13726/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Lin & Dababneh, Fadwa & Zhao, Jing, 2018. "Cost-effective supply chain for electric vehicle battery remanufacturing," Applied Energy, Elsevier, vol. 226(C), pages 277-286.
    2. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    3. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    4. Wang, Lei & Wang, Xiang & Yang, Wenxian, 2020. "Optimal design of electric vehicle battery recycling network – From the perspective of electric vehicle manufacturers," Applied Energy, Elsevier, vol. 275(C).
    5. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Li & Jiale Zhang, 2024. "Evolutionary Game Analysis of Low-Carbon Incentive Behaviour of Power Battery Recycling Based on Prospect Theory," Sustainability, MDPI, vol. 16(7), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Xing & Junzhu Yao, 2022. "Power Battery Echelon Utilization and Recycling Strategy for New Energy Vehicles Based on Blockchain Technology," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    2. Hao Hao & Wenxian Xu & Fangfang Wei & Chuanliang Wu & Zhaoran Xu, 2022. "Reward–Penalty vs. Deposit–Refund: Government Incentive Mechanisms for EV Battery Recycling," Energies, MDPI, vol. 15(19), pages 1-18, September.
    3. Liu, Chang-Yi & Wang, Hui & Tang, Juan & Chang, Ching-Ter & Liu, Zhi, 2021. "Optimal recovery model in a used batteries closed-loop supply chain considering uncertain residual capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    4. Chen, Feng & Wu, Bin & Lou, Wen-qian & Zhu, Bo-wen, 2024. "Impact of dual-credit policy on diffusion of technology R & D among automakers: Based on an evolutionary game model with technology-spillover in complex network," Energy, Elsevier, vol. 303(C).
    5. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
    6. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    7. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    8. Anna Pražanová & Vaclav Knap & Daniel-Ioan Stroe, 2022. "Literature Review, Recycling of Lithium-Ion Batteries from Electric Vehicles, Part II: Environmental and Economic Perspective," Energies, MDPI, vol. 15(19), pages 1-44, October.
    9. Wang, Yitong & Fan, Ruguo & Du, Kang & Bao, Xuguang, 2023. "Exploring incentives to promote electric vehicles diffusion under subsidy abolition: An evolutionary analysis on multiplex consumer social networks," Energy, Elsevier, vol. 276(C).
    10. Debnath, Ramit & Bardhan, Ronita & Reiner, David M. & Miller, J.R., 2021. "Political, economic, social, technological, legal and environmental dimensions of electric vehicle adoption in the United States: A social-media interaction analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Zhang, Qi & Tang, Yanyan & Bunn, Derek & Li, Hailong & Li, Yaoming, 2021. "Comparative evaluation and policy analysis for recycling retired EV batteries with different collection modes," Applied Energy, Elsevier, vol. 303(C).
    12. Menglin Zhan & Yan Chen, 2022. "Vehicle Company’s Decision-Making to Process Waste Batteries: A Game Research under the Influence of Different Government Subsidy Strategies," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    13. Lander, Laura & Tagnon, Chris & Nguyen-Tien, Viet & Kendrick, Emma & Elliott, Robert J.R. & Abbott, Andrew P. & Edge, Jacqueline S. & Offer, Gregory J., 2023. "Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs," Applied Energy, Elsevier, vol. 331(C).
    14. Rüther, Tom & Plank, Christian & Schamel, Maximilian & Danzer, Michael A., 2023. "Detection of inhomogeneities in serially connected lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
    15. Zhang, Huiming & Zhu, Kexin & Hang, Zixuan & Zhou, Dequn & Zhou, Yi & Xu, Zhidong, 2022. "Waste battery-to-reutilization decisions under government subsidies: An evolutionary game approach," Energy, Elsevier, vol. 259(C).
    16. Feng, Jianghong & Ning, Yu & Wang, Zhaohua & Li, Guo & Xiu Xu, Su, 2024. "ChatGPT-enabled two-stage auctions for electric vehicle battery recycling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    17. Wang, Lei & Wang, Xiang & Yang, Wenxian, 2020. "Optimal design of electric vehicle battery recycling network – From the perspective of electric vehicle manufacturers," Applied Energy, Elsevier, vol. 275(C).
    18. Giovanna Gonzales-Calienes & Ben Yu & Farid Bensebaa, 2022. "Development of a Reverse Logistics Modeling for End-of-Life Lithium-Ion Batteries and Its Impact on Recycling Viability—A Case Study to Support End-of-Life Electric Vehicle Battery Strategy in Canada," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    19. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    20. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13726-:d:1239962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.