IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13599-d1237865.html
   My bibliography  Save this article

Biodiesel Production from Waste Cooking Oil Using Extracted Catalyst from Plantain Banana Stem via RSM and ANN Optimization for Sustainable Development

Author

Listed:
  • Gulzar Ahmad

    (Department of Mechanical Engineering, University of Engineering and Tech, Lahore 54890, Pakistan)

  • Shahid Imran

    (Department of Mechanical Engineering, University of Engineering and Tech, Lahore 54890, Pakistan)

  • Muhammad Farooq

    (Department of Mechanical Engineering, University of Engineering and Tech, Lahore 54890, Pakistan)

  • Asad Naeem Shah

    (Department of Mechanical Engineering, University of Engineering and Tech, Lahore 54890, Pakistan)

  • Zahid Anwar

    (Department of Mechanical Engineering, University of Engineering and Tech, Lahore 54890, Pakistan)

  • Ateekh Ur Rehman

    (Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Muhammad Imran

    (Department of Mechanical, Biomedical and Design Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK)

Abstract

Biodiesel is a promising sector worldwide and is experiencing significant and rapid growth. Several studies have been undertaken to utilize homogeneous base catalysts in the form of KOH to develop biodiesel in order to establish a commercially viable and sustainable biodiesel industry. This research centers around extracting potassium hydroxide (KOH) from banana trunks and employing it in the transesterification reaction to generate biodiesel from waste cooking oil (WCO). Various operational factors were analyzed for their relative impact on biodiesel output, and after optimizing the reaction parameters, a conversion rate of 95.33% was achieved while maintaining a reaction period of 2.5 h, a methanol-to-oil molar ratio of 15:1, and a catalyst quantity of 5 wt%. Response surface methodology (RSM) and artificial neural network (ANN) models were implemented to improve and optimize these reaction parameters for the purpose of obtaining the maximum biodiesel output. Consequently, remarkably higher yields of 95.33% and 95.53% were achieved by RSM and ANN, respectively, with a quite little margin of error of 0.0003%. This study showcases immense promise for the large-scale commercial production of biodiesel.

Suggested Citation

  • Gulzar Ahmad & Shahid Imran & Muhammad Farooq & Asad Naeem Shah & Zahid Anwar & Ateekh Ur Rehman & Muhammad Imran, 2023. "Biodiesel Production from Waste Cooking Oil Using Extracted Catalyst from Plantain Banana Stem via RSM and ANN Optimization for Sustainable Development," Sustainability, MDPI, vol. 15(18), pages 1, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13599-:d:1237865
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abul Kalam Azad & Abhijaysinh Chandrasinh Jadeja & Arun Teja Doppalapudi & Nur Md Sayeed Hassan & Md Nurun Nabi & Roshan Rauniyar, 2024. "Design and Simulation of the Biodiesel Process Plant for Sustainable Fuel Production," Sustainability, MDPI, vol. 16(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
    3. Dariusz Kurczyński & Grzegorz Wcisło & Piotr Łagowski, 2021. "Experimental Study of Fuel Consumption and Exhaust Gas Composition of a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 14(12), pages 1-22, June.
    4. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    5. Wojciech Golimowski & Paweł Krzaczek & Damian Marcinkowski & Weronika Gracz & Grzegorz Wałowski, 2019. "Impact of Biogas and Waste Fats Methyl Esters on NO, NO 2 , CO, and PM Emission by Dual Fuel Diesel Engine," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    6. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    7. Nanjappa Ashwath & Hyungseok Nam & Sergio Capareda, 2021. "Maximizing Energy Recovery from Beauty Leaf Tree ( Calophyllum inophyllum L.) Oil Seed Press Cake via Pyrolysis," Energies, MDPI, vol. 14(9), pages 1-18, May.
    8. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
    9. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    10. Goli, Jibril & Sahu, Omprakash, 2018. "Development of heterogeneous alkali catalyst from waste chicken eggshell for biodiesel production," Renewable Energy, Elsevier, vol. 128(PA), pages 142-154.
    11. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    12. Zhong, Wenjun & Pachiannan, Tamilselvan & He, Zhixia & Xuan, Tiemin & Wang, Qian, 2019. "Experimental study of ignition, lift-off length and emission characteristics of diesel/hydrogenated catalytic biodiesel blends," Applied Energy, Elsevier, vol. 235(C), pages 641-652.
    13. Alejandra Sánchez-Solís & Odette Lobato-Calleros & Rubén Moreno-Terrazas & Patricia Lappe-Oliveras & Elier Neri-Torres, 2024. "Biodiesel Production Processes with Yeast: A Sustainable Approach," Energies, MDPI, vol. 17(2), pages 1-37, January.
    14. Flavio Caresana & Marco Bietresato & Massimiliano Renzi, 2021. "Injection and Combustion Analysis of Pure Rapeseed Oil Methyl Ester (RME) in a Pump-Line-Nozzle Fuel Injection System," Energies, MDPI, vol. 14(22), pages 1-25, November.
    15. Zhang, Long & Bai, Wuliyasu, 2021. "Sustainability of crop–based biodiesel for transportation in China: Barrier analysis and life cycle ecological footprint calculations," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    16. Homeyra Piri & Massimiliano Renzi & Marco Bietresato, 2023. "Technical Implications of the Use of Biofuels in Agricultural and Industrial Compression-Ignition Engines with a Special Focus on the Interactions with (Bio)lubricants," Energies, MDPI, vol. 17(1), pages 1-45, December.
    17. Abul Kalam Azad & Julian Adhikari & Pobitra Halder & Mohammad G. Rasul & Nur M. S. Hassan & Mohammad M. K. Khan & Salman Raza Naqvi & Karthickeyan Viswanathan, 2020. "Performance, Emission and Combustion Characteristics of a Diesel Engine Powered by Macadamia and Grapeseed Biodiesels," Energies, MDPI, vol. 13(11), pages 1-19, May.
    18. Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2024. "Camellia sinensis leaf-assisted green synthesis of SO3H-functionalized ZnS/biochar nanocatalyst for highly selective solketal production and improved reusability in methylene blue dye adsorption," Renewable Energy, Elsevier, vol. 224(C).
    19. Muninathan, K. & Venkata Ramanan, M. & Monish, N. & Baskar, G., 2024. "Economic analysis and TOPSIS approach to optimize the CI engine characteristics using span 80 mixed carbon nanotubes emulsified Sapindus trifoliatus (soapnut) biodiesel by artificial neural network pr," Applied Energy, Elsevier, vol. 355(C).
    20. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13599-:d:1237865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.