IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13377-d1234393.html
   My bibliography  Save this article

Capacity Assessment and Analysis of Vertiports Based on Simulation

Author

Listed:
  • Honghai Zhang

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Jingyu Li

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Yuhan Fei

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Cheng Deng

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Jia Yi

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract

City air traffic as a new transportation mode has gradually attracted attention in recent years which will bring endless vitality to future urban development. An objective and accurate assessment of the vertiport capacity for UAVs (Unmanned Aerial Vehicles) is the basis for implementing air traffic flow management for UAVs, which is also a prerequisite for improving the efficiency of urban airspace resources used. Firstly, new topology designs are proposed and named as connected and compact topology designs based on the existing central airport topology design. Subsequently, three modes of operation are summarized for vertiports with multiple TLOF pads: independent operation, dependent operation, and segregated operation. In the next place, the overall traffic flow of the vertiport model is established based on AnyLogic while analyzing the logic of UAV operation in three modes as mentioned above. Eventually, according to the simulation results, the vertiport operation capacity, the UAVs delay, and surface area utilization under different operation modes and topology designs are analyzed. The simulation result shows that the overall average delay time of UAVs for independent operation mode is about 100 s less than that of segregated operation and it also shows that the utilization rate of independent operation mode under central design is as high as 54.42% while the utilization rate of TLOF pads of other design is less than 50%, and its vertiport capacity is the largest, so the independent operational mode under central configuration is the optimal combination.

Suggested Citation

  • Honghai Zhang & Jingyu Li & Yuhan Fei & Cheng Deng & Jia Yi, 2023. "Capacity Assessment and Analysis of Vertiports Based on Simulation," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13377-:d:1234393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13377/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13377/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Honghai Zhang & Yuhan Fei & Jingyu Li & Bowen Li & Hao Liu, 2022. "Method of Vertiport Capacity Assessment Based on Queuing Theory of Unmanned Aerial Vehicles," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    2. Zou, Yiyuan & Zhang, Honghai & Zhong, Gang & Liu, Hao & Feng, Dikun, 2021. "Collision probability estimation for small unmanned aircraft systems," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziegler Haselein, Bruno & da Silva, Jonny Carlos & Hooey, Becky L., 2024. "Multiple machine learning modeling on near mid-air collisions: An approach towards probabilistic reasoning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Honghai Zhang & Yuhan Fei & Jingyu Li & Bowen Li & Hao Liu, 2022. "Method of Vertiport Capacity Assessment Based on Queuing Theory of Unmanned Aerial Vehicles," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    3. Zhong, Gang & Du, Sen & Zhang, Honghai & Zhou, Jiangying & Liu, Hao, 2024. "Demarcation method of safety separations for sUAV based on collision risk estimation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Pang, Bizhao & Hu, Xinting & Dai, Wei & Low, Kin Huat, 2022. "UAV path optimization with an integrated cost assessment model considering third-party risks in metropolitan environments," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Dai, Wei & Quek, Zhi Hao & Low, Kin Huat, 2024. "Probabilistic modeling and reasoning of conflict detection effectiveness by tracking systems towards safe urban air mobility operations," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Wu, Pengcheng & Chen, Jun, 2024. "Data-driven zonotopic approximation for n-dimensional probabilistic geofencing," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13377-:d:1234393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.