IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12118-d1212787.html
   My bibliography  Save this article

Multi-Zonal Analysis of Indoor Air Quality in a Higher Educational Building in the UK

Author

Listed:
  • Atefeh Abbaspour

    (Department of Civil and Environmental Engineering, School of Computing and Engineering, University of West London, London W5 5RF, UK)

  • Ali Bahadori-Jahromi

    (Department of Civil and Environmental Engineering, School of Computing and Engineering, University of West London, London W5 5RF, UK)

  • Shiva Amirkhani

    (Sustainability and Climate Change, WSP, 6 Devonshire Square, London EC2M 4YE, UK)

  • Alan Janbey

    (Research Department, London College, London TW5 9QX, UK)

  • Paulina B. Godfrey

    (Energy and Environment, Engineering Operations EMEA, Hilton, Maple Court, Reeds Crescent, Watford WD24 4QQ, UK)

  • Hooman Tahayori

    (Department of Computer Science and Engineering and IT, Shiraz University, Shiraz P.O. Box 71348-14336, Iran)

  • Jacek Piechowicz

    (Research Department, London College, London TW5 9QX, UK)

Abstract

This study focuses on the indoor air quality (IAQ) in a higher educational building, the London College in the UK. In this regard, indoor CO 2 levels, as well as three contaminants with detrimental effects on human health: NO 2 , PM 2.5 , and SARS-CoV-2, are investigated. Various IAQ enhancement strategies are analyzed, including increased ventilation, background ventilation, improved airflow through opened doors, and the use of HEPA air cleaners. Results revealed that background ventilation and open doors during occupied periods reduced CO 2 concentrations to around 1000 ppm. However, the effectiveness of background ventilation was influenced by outdoor conditions, such as wind speed and direction. The most effective method for reducing PM 2.5 levels was installing an air cleaner alongside a commercial kitchen hood, resulting in a 15% greater reduction compared to background ventilation. To control the SARS-CoV-2 level, combining background ventilation or opening the doors with a 16,000 m 3 /h ventilation rate or using an air cleaner with baseline ventilation resulted in a basic reproductive number below 1. Overall, the research highlights the importance of background ventilation and open doors in enclosed spaces without operable windows for natural airflow. Additionally, the effectiveness of air purifiers in reducing particle and biological contaminant concentrations is demonstrated, providing valuable insights for improving IAQ in educational buildings.

Suggested Citation

  • Atefeh Abbaspour & Ali Bahadori-Jahromi & Shiva Amirkhani & Alan Janbey & Paulina B. Godfrey & Hooman Tahayori & Jacek Piechowicz, 2023. "Multi-Zonal Analysis of Indoor Air Quality in a Higher Educational Building in the UK," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12118-:d:1212787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehzabeen Mannan & Sami G. Al-Ghamdi, 2021. "Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure," IJERPH, MDPI, vol. 18(6), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susanne Jochner-Oette & Johanna Jetschni & Petra Liedl & Annette Menzel, 2022. "Indoor Pollen Concentrations of Mountain Cedar ( Juniperus ashei ) during Rainy Episodes in Austin, Texas," IJERPH, MDPI, vol. 19(3), pages 1-11, January.
    2. Melania Maria Serafini & Ambra Maddalon & Martina Iulini & Valentina Galbiati, 2022. "Air Pollution: Possible Interaction between the Immune and Nervous System?," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    3. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Lei Li & Yilin Zheng & Shaojun Ma, 2022. "Indoor Air Purification and Residents’ Self-Rated Health: Evidence from the China Health and Nutrition Survey," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    5. Antonella Yaacoub & Moez Esseghir & Leila Merghem-Boulahia, 2023. "A Review of Different Methodologies to Study Occupant Comfort and Energy Consumption," Energies, MDPI, vol. 16(4), pages 1-18, February.
    6. Sujeong Heo & Wooram Kim & Youngmin Jo & Adedeji Adebukola Adelodun, 2024. "Fabrication of Bamboo-Based Activated Carbon for Low-Level CO 2 Adsorption toward Sustainable Indoor Air," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    7. Fupeng Zhang & Lei Shi & Simian Liu & Jiaqi Shi & Mengfei Cheng, 2022. "Indoor Air Quality in Tujia Dwellings in Hunan, China: Field Tests, Numerical Simulations, and Mitigation Strategies," IJERPH, MDPI, vol. 19(14), pages 1-27, July.
    8. Ana Ferreira & Nelson Barros, 2022. "COVID-19 and Lockdown: The Potential Impact of Residential Indoor Air Quality on the Health of Teleworkers," IJERPH, MDPI, vol. 19(10), pages 1-23, May.
    9. Elisabeth Alonso-Blanco & Francisco Javier Gómez-Moreno & Elías Díaz-Ramiro & Javier Fernández & Esther Coz & Carlos Yagüe & Carlos Román-Cascón & Adolfo Narros & Rafael Borge & Begoña Artíñano, 2023. "Real-Time Measurements of Indoor–Outdoor Exchange of Gaseous and Particulate Atmospheric Pollutants in an Urban Area," IJERPH, MDPI, vol. 20(19), pages 1-18, September.
    10. Mohammad Arar & Chuloh Jung, 2022. "Analyzing the Perception of Indoor Air Quality (IAQ) from a Survey of New Townhouse Residents in Dubai," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    11. Mei Wu & Guangwei Zhang & Liping Wang & Xiaoping Liu & Zhengwei Wu, 2022. "Influencing Factors on Airflow and Pollutant Dispersion around Buildings under the Combined Effect of Wind and Buoyancy—A Review," IJERPH, MDPI, vol. 19(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12118-:d:1212787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.