IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i3p1541-d738097.html
   My bibliography  Save this article

Indoor Pollen Concentrations of Mountain Cedar ( Juniperus ashei ) during Rainy Episodes in Austin, Texas

Author

Listed:
  • Susanne Jochner-Oette

    (Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-Ingolstadt, 85072 Eichstätt, Germany)

  • Johanna Jetschni

    (Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-Ingolstadt, 85072 Eichstätt, Germany)

  • Petra Liedl

    (Munich Institute for Integrated Materials, Energy and Process Engineering, Technical University of Munich, 85748 Garching, Germany)

  • Annette Menzel

    (TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, 85354 Freising, Germany
    Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany)

Abstract

Standard pollen monitoring programs evaluate outdoor pollen concentrations; however, information on indoor pollen is crucial for human wellbeing as people spend most of the day in indoor environments. In this study, we investigated the differences in indoor mountain cedar pollen loads between rooms of different uses and with different ventilation at The University of Texas in Austin and focused on the effect of rainy episodes on indoor/outdoor ratios of pollen concentrations. Pollen were sampled outdoors and indoors, specifically in seven rooms and in two thermal labs with controlled ventilation, during the daytime on 6 days in 2015. We calculated daily pollen concentrations, campaign pollen integrals (CPIn, the sum of all daily pollen concentrations) and ratios between indoor and outdoor concentrations (I/O ratio). Pollen concentrations differed substantially based on features related to room use and ventilation: Whereas the highest CPIn was observed in a room characterized by a frequently opened window and door, the smallest CPIn was related to a storeroom without any windows and no forced ventilation. Our results showed that rainy episodes were linked to a higher mean I/O ratio (0.98; non-rainy episodes: 0.05). This suggests that pollen accumulated indoors and reached higher levels than outdoors. Low ratios seem to signal a low level of risk for allergic people when staying inside. However, under very high outdoor pollen concentrations, small ratios can still be associated with high indoor pollen levels. In turn, high I/O ratios are not necessarily related to a (very) high indoor exposure. Therefore, I/O ratios should be considered along with pollen concentration values for a proper risk assessment. Exposure may be higher in indoor environments during prevailing precipitation events and at the end of the pollen season of a specific species. Standardized indoor environments (e.g., thermal labs) should be included in pollen monitoring programs.

Suggested Citation

  • Susanne Jochner-Oette & Johanna Jetschni & Petra Liedl & Annette Menzel, 2022. "Indoor Pollen Concentrations of Mountain Cedar ( Juniperus ashei ) during Rainy Episodes in Austin, Texas," IJERPH, MDPI, vol. 19(3), pages 1-11, January.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1541-:d:738097
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/3/1541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/3/1541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Armando Pelliccioni & Virginia Ciardini & Andrea Lancia & Simona Di Renzi & Maria Antonia Brighetti & Alessandro Travaglini & Pasquale Capone & Maria Concetta D’Ovidio, 2021. "Intercomparison of Indoor and Outdoor Pollen Concentrations in Rural and Suburban Research Workplaces," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    2. Mehzabeen Mannan & Sami G. Al-Ghamdi, 2021. "Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure," IJERPH, MDPI, vol. 18(6), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melania Maria Serafini & Ambra Maddalon & Martina Iulini & Valentina Galbiati, 2022. "Air Pollution: Possible Interaction between the Immune and Nervous System?," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    2. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Lei Li & Yilin Zheng & Shaojun Ma, 2022. "Indoor Air Purification and Residents’ Self-Rated Health: Evidence from the China Health and Nutrition Survey," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    4. Antonella Yaacoub & Moez Esseghir & Leila Merghem-Boulahia, 2023. "A Review of Different Methodologies to Study Occupant Comfort and Energy Consumption," Energies, MDPI, vol. 16(4), pages 1-18, February.
    5. Sujeong Heo & Wooram Kim & Youngmin Jo & Adedeji Adebukola Adelodun, 2024. "Fabrication of Bamboo-Based Activated Carbon for Low-Level CO 2 Adsorption toward Sustainable Indoor Air," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    6. Fupeng Zhang & Lei Shi & Simian Liu & Jiaqi Shi & Mengfei Cheng, 2022. "Indoor Air Quality in Tujia Dwellings in Hunan, China: Field Tests, Numerical Simulations, and Mitigation Strategies," IJERPH, MDPI, vol. 19(14), pages 1-27, July.
    7. Ana Ferreira & Nelson Barros, 2022. "COVID-19 and Lockdown: The Potential Impact of Residential Indoor Air Quality on the Health of Teleworkers," IJERPH, MDPI, vol. 19(10), pages 1-23, May.
    8. Elisabeth Alonso-Blanco & Francisco Javier Gómez-Moreno & Elías Díaz-Ramiro & Javier Fernández & Esther Coz & Carlos Yagüe & Carlos Román-Cascón & Adolfo Narros & Rafael Borge & Begoña Artíñano, 2023. "Real-Time Measurements of Indoor–Outdoor Exchange of Gaseous and Particulate Atmospheric Pollutants in an Urban Area," IJERPH, MDPI, vol. 20(19), pages 1-18, September.
    9. Mohammad Arar & Chuloh Jung, 2022. "Analyzing the Perception of Indoor Air Quality (IAQ) from a Survey of New Townhouse Residents in Dubai," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    10. Mei Wu & Guangwei Zhang & Liping Wang & Xiaoping Liu & Zhengwei Wu, 2022. "Influencing Factors on Airflow and Pollutant Dispersion around Buildings under the Combined Effect of Wind and Buoyancy—A Review," IJERPH, MDPI, vol. 19(19), pages 1-19, October.
    11. Atefeh Abbaspour & Ali Bahadori-Jahromi & Shiva Amirkhani & Alan Janbey & Paulina B. Godfrey & Hooman Tahayori & Jacek Piechowicz, 2023. "Multi-Zonal Analysis of Indoor Air Quality in a Higher Educational Building in the UK," Sustainability, MDPI, vol. 15(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1541-:d:738097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.