IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11497-d1201969.html
   My bibliography  Save this article

New Evacuated Tube Solar Collector with Parabolic Trough Collector and Helical Coil Heat Exchanger for Usage in Domestic Water Heating

Author

Listed:
  • Sana Said

    (Laboratory of Energy and Materials (LabEM-LR11ES34), Higher School of Science and Technology of Hammam Sousse (ESSTHS), University of Sousse, Street Lamine Abbassi, Hammam Sousse 4011, Tunisia)

  • Sofiene Mellouli

    (Mechanical Engineering Department, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia)

  • Talal Alqahtani

    (Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 9004, Saudi Arabia)

  • Salem Algarni

    (Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 9004, Saudi Arabia)

  • Ridha Ajjel

    (Laboratory of Energy and Materials (LabEM-LR11ES34), Higher School of Science and Technology of Hammam Sousse (ESSTHS), University of Sousse, Street Lamine Abbassi, Hammam Sousse 4011, Tunisia)

Abstract

Buildings represent approximately two-thirds of the overall energy needs, mainly due to the growing energy consumption of air conditioning and water heating loads. Hence, it is necessary to minimize energy usage in buildings. Numerous research studies have been carried out on evacuated tube solar collectors, but to our knowledge, no previous study has mentioned the combination of an evacuated tube solar collector with a parabolic trough collector and a helical coil heat exchanger. The objective of this paper is to evaluate the thermal behavior of an innovative evacuated tube solar collector (ETSC) incorporated with a helical coil heat exchanger and equipped with a parabolic trough collector (PTC) used as a domestic water heater. To design the parabolic solar collector, the Parabola Calculator 2.0 software was used, and the Soltrace software was used to determine the optical behavior of a PTC. Moreover, an analytical model was created in order to enhance the performance of the new model of an ETSC by studying the impact of geometric design and functional parameters on the collector’s effectiveness. An assessment of the thermal behavior of the new ETSC was performed. Thus, the proposed analytical model gives the possibility of optimizing ETSCs used as domestic water heaters with lower computational costs. Furthermore, the optimum operational and geometrical parameters of the new ETSC base-helical tube heat exchanger include a higher thermal efficiency of 72%. This finding highlights the potential of the heat exchanger as an excellent component that can be incorporated into ETSCs.

Suggested Citation

  • Sana Said & Sofiene Mellouli & Talal Alqahtani & Salem Algarni & Ridha Ajjel, 2023. "New Evacuated Tube Solar Collector with Parabolic Trough Collector and Helical Coil Heat Exchanger for Usage in Domestic Water Heating," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11497-:d:1201969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    2. Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
    3. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    4. Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
    5. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
    2. Liu, Shuaishuai & Yang, Bin & Hou, Yutian & Yu, Xiaohui, 2022. "Effects of geometric configurations on the thermal-mechanical properties of parabolic trough receivers based on coupled optical-thermal-stress model," Renewable Energy, Elsevier, vol. 199(C), pages 929-942.
    3. Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Stanek, Bartosz & Węcel, Daniel & Bartela, Łukasz & Rulik, Sebastian, 2022. "Solar tracker error impact on linear absorbers efficiency in parabolic trough collector – Optical and thermodynamic study," Renewable Energy, Elsevier, vol. 196(C), pages 598-609.
    5. Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
    6. Bilardo, Matteo & Fraisse, Gilles & Pailha, Mickael & Fabrizio, Enrico, 2020. "Design and experimental analysis of an Integral Collector Storage (ICS) prototype for DHW production," Applied Energy, Elsevier, vol. 259(C).
    7. Majedul Islam & Prasad Yarlagadda & Azharul Karim, 2018. "Effect of the Orientation Schemes of the Energy Collection Element on the Optical Performance of a Parabolic Trough Concentrating Collector," Energies, MDPI, vol. 12(1), pages 1-20, December.
    8. Gharat, Punit V. & Bhalekar, Snehal S. & Dalvi, Vishwanath H. & Panse, Sudhir V. & Deshmukh, Suresh P. & Joshi, Jyeshtharaj B., 2021. "Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Forman, Patrick & Penkert, Sebastian & Kämper, Christoph & Stallmann, Tobias & Mark, Peter & Schnell, Jürgen, 2020. "A survey of solar concrete shell collectors for parabolic troughs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
    11. Song, Jifeng & Tong, Kai & Luo, Geng & Li, Lei, 2017. "Influence of non-ideal optical factors in actual engineering on the safety and stability of a parabolic trough collector," Renewable Energy, Elsevier, vol. 113(C), pages 1293-1301.
    12. Rahimi Telwar, Donya & Khodaei, Jalal & Samimi-Akhijahani, Hadi, 2024. "Thermo-economic evaluation and structural simulation of a parabolic solar collector (PTC) integrated with a desalination system," Energy, Elsevier, vol. 299(C).
    13. Marco Milanese & Gianpiero Colangelo & Arturo de Risi, 2021. "Development of a High-Flux Solar Simulator for Experimental Testing of High-Temperature Applications," Energies, MDPI, vol. 14(11), pages 1-18, May.
    14. Li, Xiaolei & Xu, Ershu & Ma, Linrui & Song, Shuang & Xu, Li, 2019. "Modeling and dynamic simulation of a steam generation system for a parabolic trough solar power plant," Renewable Energy, Elsevier, vol. 132(C), pages 998-1017.
    15. Qu, Wanjun & Wang, Ruilin & Hong, Hui & Sun, Jie & Jin, Hongguang, 2017. "Test of a solar parabolic trough collector with rotatable axis tracking," Applied Energy, Elsevier, vol. 207(C), pages 7-17.
    16. Zou, Bin & Jiang, Yiqiang & Yao, Yang & Yang, Hongxing, 2019. "Impacts of non-ideal optical factors on the performance of parabolic trough solar collectors," Energy, Elsevier, vol. 183(C), pages 1150-1165.
    17. Lecuona-Neumann, Antonio & Famiglietti, Antonio & Legrand, Mathieu, 2019. "Theoretical study of direct vapor generation for energy integrated solar absorption machines," Renewable Energy, Elsevier, vol. 135(C), pages 1335-1353.
    18. Winkelmann, Ulf & Kämper, Christoph & Höffer, Rüdiger & Forman, Patrick & Ahrens, Mark Alexander & Mark, Peter, 2020. "Wind actions on large-aperture parabolic trough solar collectors: Wind tunnel tests and structural analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2390-2407.
    19. Yunhong Shi & Davood Toghraie & Farzad Nadi & Gholamreza Ahmadi & As’ad Alizadeh & Long Zhang, 2021. "The effect of the pitch angle, two-axis tracking system, and wind velocity on the parabolic trough solar collector thermal performance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17329-17348, December.
    20. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11497-:d:1201969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.