IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11205-d1196868.html
   My bibliography  Save this article

Realistic Home Energy Management System Considering the Life Cycle of Photovoltaic and Energy Storage Systems

Author

Listed:
  • Zaid A. Al Muala

    (TECH-NASE Research Group, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain)

  • Mohammad A. Bany Issa

    (TECH-NASE Research Group, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain)

  • Daniel Sansó-Rubert Pascual

    (Department of Legal and Political Sciences, Universidad Europea, 28670 Madrid, Spain)

  • Pastora M. Bello Bugallo

    (TECH-NASE Research Group, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain)

Abstract

Home Energy Management Systems (HEMSs) have become necessary due to energy security and climate change concerns. Scheduling the operating time of household appliances is one of the most effective strategies used by HEMSs to reduce electricity costs, with several studies proposing optimization strategies for scheduling home appliances to reduce the grid energy usage cost. This work considers energy usage costs from Renewable Energy Sources (RESs) and Energy Storage Systems (ESSs) in the appliance-scheduling strategy and energy flow management. The objectives are reducing the real electricity cost while maintaining a longer battery lifespan, reducing battery charging/discharging losses, and using PV power efficiently. To achieve this, we developed a pricing model of battery energy usage, in addition to modeling the PV energy usage cost based on the Levelized Cost of Energy (LCOE) for PV systems. PV-battery energy usage cost models were introduced into the optimization problem solved using the Augmented Grey Wolf Optimization (AGWO) and Particle Swarm Optimization (PSO) algorithms in MATLAB. We developed an efficient energy flow management algorithm. We collected real data from a home in Vigo, Spain, and simulated four scenarios. The results show that the proposed system using AGWO and PSO reduced the real cost by 25.87% and 25.98%, respectively. Compared with an existing energy-usage-pricing model, the AGWO reduced the energy losses by 40.429% and extended the battery lifespan by 68.282%. Similarly, the PSO reduced the energy losses by 45.540% and extended the battery lifespan by 84.56%. Moreover, the proposed system reached the breakeven point of the system in a shorter time.

Suggested Citation

  • Zaid A. Al Muala & Mohammad A. Bany Issa & Daniel Sansó-Rubert Pascual & Pastora M. Bello Bugallo, 2023. "Realistic Home Energy Management System Considering the Life Cycle of Photovoltaic and Energy Storage Systems," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11205-:d:1196868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
    2. Hafiz Majid Hussain & Nadeem Javaid & Sohail Iqbal & Qadeer Ul Hasan & Khursheed Aurangzeb & Musaed Alhussein, 2018. "An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid," Energies, MDPI, vol. 11(1), pages 1-28, January.
    3. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatih Issi & Orhan Kaplan, 2018. "The Determination of Load Profiles and Power Consumptions of Home Appliances," Energies, MDPI, vol. 11(3), pages 1-18, March.
    2. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    3. Muhammad Majid Hussain & Rizwan Akram & Zulfiqar Ali Memon & Mian Hammad Nazir & Waqas Javed & Muhammad Siddique, 2021. "Demand Side Management Techniques for Home Energy Management Systems for Smart Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    4. Steffen Limmer & Nils Einecke, 2022. "An Efficient Approach for Peak-Load-Aware Scheduling of Energy-Intensive Tasks in the Context of a Public IEEE Challenge," Energies, MDPI, vol. 15(10), pages 1-23, May.
    5. Makhadmeh, Sharif Naser & Khader, Ahamad Tajudin & Al-Betar, Mohammed Azmi & Naim, Syibrah & Abasi, Ammar Kamal & Alyasseri, Zaid Abdi Alkareem, 2019. "Optimization methods for power scheduling problems in smart home: Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Doğukan Aycı & Ferhat Öğüt & Ulaş Özen & Bora Batuhan İşgör & Sinan Küfeoğlu, 2021. "Energy Optimisation Models for Self-Sufficiency of a Typical Turkish Residential Electricity Customer of the Future," Energies, MDPI, vol. 14(19), pages 1-24, September.
    7. Rocha, Helder R.O. & Honorato, Icaro H. & Fiorotti, Rodrigo & Celeste, Wanderley C. & Silvestre, Leonardo J. & Silva, Jair A.L., 2021. "An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes," Applied Energy, Elsevier, vol. 282(PA).
    8. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    9. Zunaira Nadeem & Nadeem Javaid & Asad Waqar Malik & Sohail Iqbal, 2018. "Scheduling Appliances with GA, TLBO, FA, OSR and Their Hybrids Using Chance Constrained Optimization for Smart Homes," Energies, MDPI, vol. 11(4), pages 1-30, April.
    10. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Shakeri, Mohammad & Shayestegan, Mohsen & Reza, S.M. Salim & Yahya, Iskandar & Bais, Badariah & Akhtaruzzaman, Md & Sopian, Kamaruzzaman & Amin, Nowshad, 2018. "Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source," Renewable Energy, Elsevier, vol. 125(C), pages 108-120.
    12. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    13. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    14. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    15. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    16. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    17. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building," Renewable Energy, Elsevier, vol. 146(C), pages 568-579.
    18. Abdelfettah Kerboua & Fouad Boukli-Hacene & Khaldoon A Mourad, 2020. "Particle Swarm Optimization for Micro-Grid Power Management and Load Scheduling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 71-80.
    19. Krzysztof Gajowniczek & Tomasz Ząbkowski, 2017. "Electricity forecasting on the individual household level enhanced based on activity patterns," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-26, April.
    20. Omowunmi Mary Longe & Khmaies Ouahada, 2018. "Mitigating Household Energy Poverty through Energy Expenditure Affordability Algorithm in a Smart Grid," Energies, MDPI, vol. 11(4), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11205-:d:1196868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.