IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10995-d1193412.html
   My bibliography  Save this article

Distributed Energy Resource Exploitation through Co-Optimization of Power System and Data Centers with Uncertainties during Demand Response

Author

Listed:
  • Yu Weng

    (School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore
    These authors contributed equally to this work.)

  • Yang Liu

    (School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore
    Engie Lab, Singapore 118535, Singapore
    These authors contributed equally to this work.)

  • Rachel Li Ting Lim

    (School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore)

  • Hung D. Nguyen

    (School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore)

Abstract

This paper presents a robust bi-level co-optimization model that promotes the active participation of Internet Data Centers (IDCs) in demand response (DR) programs, thereby enhancing the flexibility of power systems. Our approach involves leveraging virtual power lines to migrate workloads among IDCs, optimizing resource allocations, and benefiting both domains. The model incorporates a Gaussian Process Regression (GPR)-constructed DR price–amount curve, which largely contributes to the simplification of the optimization problem with high accuracy and computational efficiency. It also respects the information barriers between the two domains of power systems and IDCs, and thus safeguards the privacy and flexibility of IDCs. The uncertainty in IDC operations is considered by incorporating the variance in GPR into the demand response curve. By integrating IDCs as DR resources, the framework of this research enhances the flexibility of power systems and the efficiency of cross-domain co-optimization. The model and algorithm are validated using modified IEEE test systems.

Suggested Citation

  • Yu Weng & Yang Liu & Rachel Li Ting Lim & Hung D. Nguyen, 2023. "Distributed Energy Resource Exploitation through Co-Optimization of Power System and Data Centers with Uncertainties during Demand Response," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10995-:d:1193412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Ting & Zhao, Yingjie & Pen, Haibo & Wang, Zhaoxia, 2018. "Data center holistic demand response algorithm to smooth microgrid tie-line power fluctuation," Applied Energy, Elsevier, vol. 231(C), pages 277-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pallonetto, Fabiano & De Rosa, Mattia & Milano, Federico & Finn, Donal P., 2019. "Demand response algorithms for smart-grid ready residential buildings using machine learning models," Applied Energy, Elsevier, vol. 239(C), pages 1265-1282.
    2. Han, Ouzhu & Ding, Tao & Yang, Miao & Jia, Wenhao & He, Xinran & Ma, Zhoujun, 2024. "A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization," Applied Energy, Elsevier, vol. 358(C).
    3. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    4. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    5. Ji, Haoran & Chen, Sirui & Yu, Hao & Li, Peng & Yan, Jinyue & Song, Jieying & Wang, Chengshan, 2022. "Robust operation for minimizing power consumption of data centers with flexible substation integration," Energy, Elsevier, vol. 248(C).
    6. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    7. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    8. Mengmeng Zhao & Xiaoying Wang, 2021. "A Synthetic Approach for Datacenter Power Consumption Regulation towards Specific Targets in Smart Grid Environment," Energies, MDPI, vol. 14(9), pages 1-25, May.
    9. Xiao, Xianyong & Zhang, Mingshun & Yang, Ruohuan & Chen, Xiaoyuan & Zheng, Zixuan, 2024. "Superconducting magnetic energy storage based modular interline dynamic voltage restorer for renewable-based MTDC network," Applied Energy, Elsevier, vol. 371(C).
    10. Chen, Boyu & Che, Yanbo & Zheng, Zhihao & Zhao, Shuaijun, 2023. "Multi-objective robust optimal bidding strategy for a data center operator based on bi-level optimization," Energy, Elsevier, vol. 269(C).
    11. Hou, Lingxi & Li, Weiqi & Zhou, Kui & Jiang, Qirong, 2019. "Integrating flexible demand response toward available transfer capability enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Wang, Jiangjiang & Deng, Hongda & Liu, Yi & Guo, Zeqing & Wang, Yongzhen, 2023. "Coordinated optimal scheduling of integrated energy system for data center based on computing load shifting," Energy, Elsevier, vol. 267(C).
    13. Sun, Fangyuan & Kong, Xiangyu & Wu, Jianzhong & Gao, Bixuan & Chen, Ke & Lu, Ning, 2022. "DSM pricing method based on A3C and LSTM under cloud-edge environment," Applied Energy, Elsevier, vol. 315(C).
    14. Francesco Gulotta & Edoardo Daccò & Alessandro Bosisio & Davide Falabretti, 2023. "Opening of Ancillary Service Markets to Distributed Energy Resources: A Review," Energies, MDPI, vol. 16(6), pages 1-25, March.
    15. Xihao Wang & Xiaojun Wang & Yuqing Liu & Chun Xiao & Rongsheng Zhao & Ye Yang & Zhao Liu, 2022. "A Sustainability Improvement Strategy of Interconnected Data Centers Based on Dispatching Potential of Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 14(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10995-:d:1193412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.