IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10287-d1182549.html
   My bibliography  Save this article

Shared Trading Strategy of Multiple Microgrids Considering Joint Carbon and Green Certificate Mechanism

Author

Listed:
  • Peng Chen

    (State Grid Shanghai Economic Research Institute, Shanghai 200233, China)

  • Chen Qian

    (State Grid Shanghai Economic Research Institute, Shanghai 200233, China)

  • Li Lan

    (State Grid Shanghai Economic Research Institute, Shanghai 200233, China)

  • Mingxing Guo

    (State Grid Shanghai Economic Research Institute, Shanghai 200233, China)

  • Qiong Wu

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Hongbo Ren

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Yue Zhang

    (College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

Abstract

With a background of carbon peak and neutrality, the economic and environmental requirements are increasing for microgrids. In view of the problem of energy wastage and conflicts of interest among multiple microgrid integrated energy systems, it is important to study the operation optimization of microgrid clusters while considering the sharing and trading of both carbon emissions and green certificates. In this study, a Stackelberg game mechanism is applied, in which the microgrid operator is the leader and its subscribers are the followers, forming a master–slave interaction model. Following this, breaking the trading barriers of energy and various policy markets, the joint carbon and green certificate trading mechanism is proposed. Moreover, a mutually beneficial shared trading model of multi-microgrids considering coupled energy and carbon and green certificate trading is proposed to avoid the problem of double counting of environmental attributes. In addition, a cooperative sharing center is assumed to propose a flexible multi-resource sharing price mechanism. It guides each microgrid operator to conduct internal multi-resource sharing trading, so as to reduce the daily operating costs of energy supplying entities in the cooperative system of multiple microgrids, effectively reduce carbon emissions, and improve the balance of network group mutual aid. According to the simulation results of an illustrative example, the proposed trading strategy can effectively unlock the potential of resource sharing and mutual aid within multi-microgrids and improve the economy and carbon reduction effects of the overall system.

Suggested Citation

  • Peng Chen & Chen Qian & Li Lan & Mingxing Guo & Qiong Wu & Hongbo Ren & Yue Zhang, 2023. "Shared Trading Strategy of Multiple Microgrids Considering Joint Carbon and Green Certificate Mechanism," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10287-:d:1182549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10287/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10287/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alizadeh Bidgoli, Mohsen & Ahmadian, Ali, 2022. "Multi-stage optimal scheduling of multi-microgrids using deep-learning artificial neural network and cooperative game approach," Energy, Elsevier, vol. 239(PB).
    2. Wu, Qiong & Xie, Zhun & Ren, Hongbo & Li, Qifen & Yang, Yongwen, 2022. "Optimal trading strategies for multi-energy microgrid cluster considering demand response under different trading modes: A comparison study," Energy, Elsevier, vol. 254(PC).
    3. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    4. Marchi, B. & Zanoni, S. & Zavanella, L.E. & Jaber, M.Y., 2019. "Supply chain models with greenhouse gases emissions, energy usage, imperfect process under different coordination decisions," International Journal of Production Economics, Elsevier, vol. 211(C), pages 145-153.
    5. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianhong Hao & Ting Huang & Qiuming Xu & Yi Sun, 2023. "Robust Optimal Scheduling of Microgrid with Electric Vehicles Based on Stackelberg Game," Sustainability, MDPI, vol. 15(24), pages 1-15, December.
    2. Yuzhe Zhao & Jingwen Chen, 2024. "Collaborative Optimization Scheduling of Multi-Microgrids Incorporating Hydrogen-Doped Natural Gas and P2G–CCS Coupling under Carbon Trading and Carbon Emission Constraints," Energies, MDPI, vol. 17(8), pages 1-30, April.
    3. Meng, Yuxiang & Ma, Gang & Yao, Yunting & Li, Hao, 2024. "Nash bargaining based integrated energy agent optimal operation strategy considering negotiation pricing for tradable green certificate," Applied Energy, Elsevier, vol. 356(C).
    4. Zhang, Yue & Wu, Qiong & Ren, Hongbo & Li, Qifen & Zhou, Weisheng, 2024. "Optimal operation of multi-microgrid systems considering multi-level energy-certificate-carbon coupling trading," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yue & Wu, Qiong & Ren, Hongbo & Li, Qifen & Zhou, Weisheng, 2024. "Optimal operation of multi-microgrid systems considering multi-level energy-certificate-carbon coupling trading," Renewable Energy, Elsevier, vol. 227(C).
    2. Sarkar, Biswajit & Seok, Hyesung & Jana, Tapas Kumar & Dey, Bikash Koli, 2023. "Is the system reliability profitable for retailing and consumer service of a dynamical system under cross-price elasticity of demand?," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    3. Liu, Xinglei & Liu, Jun & Ren, Kezheng & Liu, Xiaoming & Liu, Jiacheng, 2022. "An integrated fuzzy multi-energy transaction evaluation approach for energy internet markets considering judgement credibility and variable rough precision," Energy, Elsevier, vol. 261(PB).
    4. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    5. Yongjian Wang & Fei Wang & Wenbo Li, 2023. "Effects of the Carbon Credit Policy on the Capital-Constrained Manufacturer’s Remanufacturing and Emissions Decisions," IJERPH, MDPI, vol. 20(5), pages 1-17, February.
    6. Jiang, Yihuo & Ni, Hongliang & Ni, Yihan & Guo, Xiaomei, 2023. "Assessing environmental, social, and governance performance and natural resource management policies in China's dual carbon era for a green economy," Resources Policy, Elsevier, vol. 85(PB).
    7. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    8. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    9. Vandana & Shiv Raj Singh & Mitali Sarkar & Biswajit Sarkar, 2023. "Effect of Learning and Forgetting on Inventory Model under Carbon Emission and Agile Manufacturing," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    10. Zhang, Yingying & Feng, Nianqiao & Wang, Xinpeng, 2024. "Can the green finance pilot policy promote the low-carbon transformation of the economy?," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1074-1086.
    11. Yang, Yuyan & Xu, Xiao & Pan, Li & Liu, Junyong & Liu, Jichun & Hu, Weihao, 2024. "Distributed prosumer trading in the electricity and carbon markets considering user utility," Renewable Energy, Elsevier, vol. 228(C).
    12. Guori Huang & Zheng Chen & Nan Shang & Xiaoyue Hu & Chen Wang & Huan Wen & Zhiliang Liu, 2024. "Do Tradable Green Certificates Promote Regional Carbon Emissions Reduction for Sustainable Development? Evidence from China," Sustainability, MDPI, vol. 16(17), pages 1-20, August.
    13. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).
    14. Lee, Jun-Yeon & Choi, Sungyong, 2021. "Supply chain investment and contracting for carbon emissions reduction: A social planner's perspective," International Journal of Production Economics, Elsevier, vol. 231(C).
    15. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    16. Xia, Jing & Niu, Wenju, 2021. "Carbon-reducing contract design for a supply chain with environmental responsibility under asymmetric information," Omega, Elsevier, vol. 102(C).
    17. Basim S. O. Alsaedi, 2024. "A Sustainable Supply Chain Model with a Setup Cost Reduction Policy for Imperfect Items under Learning in a Cloudy Fuzzy Environment," Mathematics, MDPI, vol. 12(10), pages 1-33, May.
    18. Lingjuan Xu & Yijiang Liu & Beibei Xiang & Qunwei Wang, 0000. "The Impact of Digital Finance on the High-quality development of Manufacturing Industry: Evidence from China," Proceedings of Economics and Finance Conferences 14716391, International Institute of Social and Economic Sciences.
    19. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    20. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10287-:d:1182549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.