IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p9130-d1164450.html
   My bibliography  Save this article

What Type of Energy Structure Improves Eco-Efficiency? A Study Based on Statistical Data of 285 Prefecture-Level Entities in China

Author

Listed:
  • Fan Zhang

    (School of Economics and Trade, Hunan University, Changsha 410006, China)

  • Nengsheng Luo

    (School of Economics and Trade, Hunan University, Changsha 410006, China)

  • Yanfei Li

    (School of Economics and Trade, Hunan University of Technology and Business, Changsha 410205, China)

Abstract

Increasing environmental pollution, resource depletion, and climate change have led to policymakers paying increased attention to the environmental and ecological impacts of economic activities. To establish which type of energy structure is most conducive to improving eco-efficiency, we use the super-efficiency data envelopment analysis (DEA) model to quantify the relationship between the two, based on the panel data of 285 prefecture-level cities in China from 2005 to 2016. The heterogeneity and spatial spillover effect on different types of cities are further discussed. Our findings suggest that energy structure optimization by reducing the proportion of coal energy is beneficial to improving ecological efficiency. However, the effect is nonlinear, showing an inverted U-shaped nonlinear change. The influence of energy structure optimization on ecological efficiency has a stronger effect on its improvement of resource-based and old industrial cities. Moreover, it has an obvious “local–neighborhood” spatial spillover effect. Additionally, the energy structure could be improved according to local conditions in different regions, such as the level of economic development, industrial structure, and resource endowment conditions. Furthermore, regional cooperation and coordination should be strengthened and consolidated, along with the positive spatial effects of high eco-efficiency cities. Especially in city clusters and metropolitan areas, the strengthening of cross-city cooperation in emission trading, environmental governance, and compensation is vital.

Suggested Citation

  • Fan Zhang & Nengsheng Luo & Yanfei Li, 2023. "What Type of Energy Structure Improves Eco-Efficiency? A Study Based on Statistical Data of 285 Prefecture-Level Entities in China," Sustainability, MDPI, vol. 15(11), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9130-:d:1164450
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/9130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/9130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Qiyan & Zhang, Xiaoling & Shang, Zhengyong & Li, Zaijun, 2015. "Political-economy based institutional industry complex and sustainable development: The case of the salt-chemical industry in Huai’an, China," Energy Policy, Elsevier, vol. 87(C), pages 39-47.
    2. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    3. Konstantinos Petridis & Alexander Chatzigeorgiou & Emmanouil Stiakakis, 2016. "A spatiotemporal Data Envelopment Analysis (S-T DEA) approach: the need to assess evolving units," Annals of Operations Research, Springer, vol. 238(1), pages 475-496, March.
    4. Plácido Moreno & Sebastián Lozano, 2014. "A network DEA assessment of team efficiency in the NBA," Annals of Operations Research, Springer, vol. 214(1), pages 99-124, March.
    5. Konstantinos Petridis & Alexander Chatzigeorgiou & Emmanouil Stiakakis, 2016. "A spatiotemporal Data Envelopment Analysis (S-T DEA) approach: the need to assess evolving units," Annals of Operations Research, Springer, vol. 238(1), pages 475-496, March.
    6. Qingyou Yan & Xu Wang & Tomas Baležentis & Dalia Streimikiene, 2018. "Energy–economy–environmental (3E) performance of Chinese regions based on the data envelopment analysis model with mixed assumptions on disposability," Energy & Environment, , vol. 29(5), pages 664-684, August.
    7. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Jie Wu & Liang Liang, 2012. "A multiple criteria ranking method based on game cross-evaluation approach," Annals of Operations Research, Springer, vol. 197(1), pages 191-200, August.
    10. Malin Song & Jun Tao & Shuhong Wang, 2015. "FDI, technology spillovers and green innovation in China: analysis based on Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 228(1), pages 47-64, May.
    11. Yu Yu & Weiwei Zhu & Qian Zhang, 2019. "DEA cross-efficiency evaluation and ranking method based on interval data," Annals of Operations Research, Springer, vol. 278(1), pages 159-175, July.
    12. Necmi Avkiran & Lin Cai, 2014. "Identifying distress among banks prior to a major crisis using non-oriented super-SBM," Annals of Operations Research, Springer, vol. 217(1), pages 31-53, June.
    13. Rashidi, Kamran & Farzipoor Saen, Reza, 2015. "Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement," Energy Economics, Elsevier, vol. 50(C), pages 18-26.
    14. Necmi Avkiran & Kaoru Tone & Miki Tsutsui, 2008. "Bridging radial and non-radial measures of efficiency in DEA," Annals of Operations Research, Springer, vol. 164(1), pages 127-138, November.
    15. Hao Chen & Qiyan Wu & Jianquan Cheng & Zhifei Ma & Weixuan Song, 2015. "Scaling-up Strategy as an Appropriate Approach for Sustainable New Town Development? Lessons from Wujin, Changzhou, China," Sustainability, MDPI, vol. 7(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    2. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    3. Peng, Hongsong & Zhang, Jinhe & Lu, Lin & Tang, Guorong & Yan, Bingjin & Xiao, Xiao & Han, Ya, 2017. "Eco-efficiency and its determinants at a tourism destination: A case study of Huangshan National Park, China," Tourism Management, Elsevier, vol. 60(C), pages 201-211.
    4. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    5. Junlong Li & Chuangneng Cai & Feng Zhang, 2020. "Assessment of Ecological Efficiency and Environmental Sustainability of the Minjiang-Source in China," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    6. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    7. Li, Feng & Zhu, Qingyuan & Chen, Zhi, 2019. "Allocating a fixed cost across the decision making units with two-stage network structures," Omega, Elsevier, vol. 83(C), pages 139-154.
    8. Amirteimoori, Alireza & Cezar, Asunur & Zadmirzaei, Majid & Susaeta, Andres, 2024. "Environmental performance evaluation in the forest sector: An extended stochastic data envelopment analysis approach," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    9. Feng Li & Han Wu & Qingyuan Zhu & Liang Liang & Gang Kou, 2021. "Data envelopment analysis cross efficiency evaluation with reciprocal behaviors," Annals of Operations Research, Springer, vol. 302(1), pages 173-210, July.
    10. Lucio Cecchini & Francesco Romagnoli & Massimo Chiorri & Biancamaria Torquati, 2023. "Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector," Agriculture, MDPI, vol. 13(5), pages 1-18, May.
    11. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
    12. Arnab Adhikari & Adrija Majumdar & Gaurav Gupta & Arnab Bisi, 2020. "An innovative super-efficiency data envelopment analysis, semi-variance, and Shannon-entropy-based methodology for player selection: evidence from cricket," Annals of Operations Research, Springer, vol. 284(1), pages 1-32, January.
    13. K. Tone & M. Tsutsui, 2015. "How to Deal with Non-Convex Frontiers in Data Envelopment Analysis," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 1002-1028, September.
    14. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    15. Puertas, Rosa & Guaita-Martinez, José M. & Carracedo, Patricia & Ribeiro-Soriano, Domingo, 2022. "Analysis of European environmental policies: Improving decision making through eco-efficiency," Technology in Society, Elsevier, vol. 70(C).
    16. Li-Ling Kao, 2023. "ESG-Based Performance Assessment of the Operation and Management of Industrial Parks in Taiwan," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    17. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
    18. Shiu-Wan Hung & Chao-Liang Chang & Shu Ming Liu, 2019. "Innovation System Assessment Model for Sustainability Planning in Taiwan," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    19. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2015. "Assessing environmental performance trends in the transport industry: Eco-innovation or catching-up?," Energy Economics, Elsevier, vol. 51(C), pages 570-580.
    20. Yongyoon Suh & Hyeonju Seol & Hyerim Bae & Yongtae Park, 2014. "Eco-efficiency Based on Social Performance and its Relationship with Financial Performance," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 909-919, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9130-:d:1164450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.