IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8979-d1162311.html
   My bibliography  Save this article

A Semi-Automated Two-Step Building Stock Monitoring Methodology for Supporting Immediate Solutions in Urban Issues

Author

Listed:
  • Mehmet Isiler

    (Department of Geomatics Engineering, Faculty of Civil Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye)

  • Mustafa Yanalak

    (Department of Geomatics Engineering, Faculty of Civil Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye)

  • Muhammed Enes Atik

    (Department of Geomatics Engineering, Faculty of Civil Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye)

  • Saziye Ozge Atik

    (Department of Geomatics Engineering, Faculty of Engineering, Gebze Technical University, 41400 Kocaeli, Türkiye)

  • Zaide Duran

    (Department of Geomatics Engineering, Faculty of Civil Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye)

Abstract

The Sustainable Development Goals (SDGs) have addressed environmental and social issues in cities, such as insecure land tenure, climate change, and vulnerability to natural disasters. SDGs have motivated authorities to adopt urban land policies that support the quality and safety of urban life. Reliable, accurate, and up-to-date building information should be provided to develop effective land policies to solve the challenges of urbanization. Creating comprehensive and effective systems for land management in urban areas requires a significant long-term effort. However, some procedures should be undertaken immediately to mitigate the potential negative impacts of urban problems on human life. In developing countries, public records may not reflect the current status of buildings. Thus, implementing an automated and rapid building monitoring system using the potential of high-spatial-resolution satellite images and street views may be ideal for urban areas. This study proposed a two-step automated building stock monitoring mechanism. Our proposed method can identify critical building features, such as the building footprint and the number of floors. In the first step, buildings were automatically detected by using the object-based image analysis (OBIA) method on high-resolution spatial satellite images. In the second step, vertical images of the buildings were collected. Then, the number of the building floors was determined automatically using Google Street View Images (GSVI) via the YOLOv5 algorithm and the kernel density estimation method. The first step of the experiment was applied to the high-resolution images of the Pleiades satellite, which covers three different urban areas in Istanbul. The average accuracy metrics of the OBIA experiment for Area 1, Area 2, and Area 3 were 92.74%, 92.23%, and 92.92%, respectively. The second step of the experiment was applied to the image dataset containing the GSVIs of several buildings in different Istanbul streets. The perspective effect, the presence of more than one building in the photograph, some obstacles around the buildings, and different window sizes caused errors in the floor estimations. For this reason, the operator’s manual interpretation when obtaining SVIs increases the floor estimation accuracy. The proposed algorithm estimates the number of floors at a rate of 79.2% accuracy for the SVIs collected by operator interpretation. Consequently, our methodology can easily be used to monitor and document the critical features of the existing buildings. This approach can support an immediate emergency action plan to reduce the possible losses caused by urban problems. In addition, this method can be utilized to analyze the previous conditions after damage or losses occur.

Suggested Citation

  • Mehmet Isiler & Mustafa Yanalak & Muhammed Enes Atik & Saziye Ozge Atik & Zaide Duran, 2023. "A Semi-Automated Two-Step Building Stock Monitoring Methodology for Supporting Immediate Solutions in Urban Issues," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8979-:d:1162311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Ye & Wei Zeng & Qiaomu Shen & Xiaohu Zhang & Yi Lu, 2019. "The visual quality of streets: A human-centred continuous measurement based on machine learning algorithms and street view images," Environment and Planning B, , vol. 46(8), pages 1439-1457, October.
    2. Iban, Muzaffer Can, 2020. "Lessons from approaches to informal housing and non-compliant development in Turkey: An in-depth policy analysis with a historical framework," Land Use Policy, Elsevier, vol. 99(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bohong Zheng & Rui Guo & Komi Bernard Bedra & Yanfen Xiang, 2022. "Quantitative Evaluation of Urban Style at Street Level: A Case Study of Hengyang County, China," Land, MDPI, vol. 11(4), pages 1-28, March.
    2. Lingzhu Zhang & Yu Ye & Wenxin Zeng & Alain Chiaradia, 2019. "A Systematic Measurement of Street Quality through Multi-Sourced Urban Data: A Human-Oriented Analysis," IJERPH, MDPI, vol. 16(10), pages 1-24, May.
    3. Bartzokas-Tsiompras, Alexandros & Bakogiannis, Efthimios & Nikitas, Alexandros, 2023. "Global microscale walkability ratings and rankings: A novel composite indicator for 59 European city centres," Journal of Transport Geography, Elsevier, vol. 111(C).
    4. Khalid Mohammed Almatar, 2024. "Rehumanize the Streets and Make Them More Smart and Livable in Arab Cities: Case Study: Tahlia Street; Riyadh City, Saudi Arabia," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    5. Kanyou Sou & Hiroya Shiokawa & Kento Yoh & Kenji Doi, 2021. "Street Design for Hedonistic Sustainability through AI and Human Co-Operative Evaluation," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    6. Haozun Sun & Hong Xu & Hao He & Quanfeng Wei & Yuelin Yan & Zheng Chen & Xuanhe Li & Jialun Zheng & Tianyue Li, 2023. "A Spatial Analysis of Urban Streets under Deep Learning Based on Street View Imagery: Quantifying Perceptual and Elemental Perceptual Relationships," Sustainability, MDPI, vol. 15(20), pages 1-30, October.
    7. Teng Zhong & Guonian Lü & Xiuming Zhong & Haoming Tang & Yu Ye, 2020. "Measuring Human-Scale Living Convenience through Multi-Sourced Urban Data and a Geodesign Approach: Buildings as Analytical Units," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
    8. Yibang Zhang & Yukun Zou & Zhenjun Zhu & Xiucheng Guo & Xin Feng, 2022. "Evaluating Pedestrian Environment Using DeepLab Models Based on Street Walkability in Small and Medium-Sized Cities: Case Study in Gaoping, China," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    9. Yilei Tao & Ying Wang & Xinyu Wang & Guohang Tian & Shumei Zhang, 2022. "Measuring the Correlation between Human Activity Density and Streetscape Perceptions: An Analysis Based on Baidu Street View Images in Zhengzhou, China," Land, MDPI, vol. 11(3), pages 1-19, March.
    10. Andrew Crooks & Linda See, 2022. "Leveraging Street Level Imagery for Urban Planning," Environment and Planning B, , vol. 49(3), pages 773-776, March.
    11. Jiacheng Shi & Yu Yan & Mingxuan Li & Long Zhou, 2024. "Measuring the Convergence and Divergence in Urban Street Perception among Residents and Tourists through Deep Learning: A Case Study of Macau," Land, MDPI, vol. 13(3), pages 1-29, March.
    12. Jingxiong Huang & Jiaqi Liang & Mengsheng Yang & Yuan Li, 2022. "Visual Preference Analysis and Planning Responses Based on Street View Images: A Case Study of Gulangyu Island, China," Land, MDPI, vol. 12(1), pages 1-15, December.
    13. Yiwei Bai & Yihang Bai & Ruoyu Wang & Tianren Yang & Xinyao Song & Bo Bai, 2023. "Exploring Associations between the Built Environment and Cycling Behaviour around Urban Greenways from a Human-Scale Perspective," Land, MDPI, vol. 12(3), pages 1-19, March.
    14. Jia Tao & Meng Yang & Jing Wu, 2022. "Coupling Coordination Evaluation of Lakefront Landscape Spatial Quality and Public Sentiment," Land, MDPI, vol. 11(6), pages 1-29, June.
    15. Aibo Jin & Yunyu Ge & Shiyang Zhang, 2024. "Spatial Characteristics of Multidimensional Urban Vitality and Its Impact Mechanisms by the Built Environment," Land, MDPI, vol. 13(7), pages 1-22, July.
    16. Md Amiruzzaman & Andrew Curtis & Ye Zhao & Suphanut Jamonnak & Xinyue Ye, 2021. "Classifying crime places by neighborhood visual appearance and police geonarratives: a machine learning approach," Journal of Computational Social Science, Springer, vol. 4(2), pages 813-837, November.
    17. Gong, Wenjing & Rui, Jin & Li, Tianyu, 2024. "Deciphering urban bike-sharing patterns: An in-depth analysis of natural environment and visual quality in New York's Citi bike system," Journal of Transport Geography, Elsevier, vol. 115(C).
    18. Yu Ye & Hanting Xie & Jia Fang & Hetao Jiang & De Wang, 2019. "Daily Accessed Street Greenery and Housing Price: Measuring Economic Performance of Human-Scale Streetscapes via New Urban Data," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    19. Li, Ling & Xia, Fangzhou, 2022. "Wandering in the gray: The pricing of housing restricted by land use regulation in Beijing, China," Land Use Policy, Elsevier, vol. 115(C).
    20. Guan Li & Liping Wang & Cifang Wu & Zhongguo Xu & Yuefei Zhuo & Xiaoqiang Shen, 2022. "Spatial Planning Implementation Effectiveness: Review and Research Prospects," Land, MDPI, vol. 11(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8979-:d:1162311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.