IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8636-d1156314.html
   My bibliography  Save this article

A Knowledge-Based Engineering System for the Planning of Networked Rainwater Harvesting and Distribution Systems

Author

Listed:
  • Paul Christoph Gembarski

    (Institute of Product Development, Leibniz University of Hannover, 30823 Garbsen, Germany)

  • Jan Melching

    (Institute of Product Development, Leibniz University of Hannover, 30823 Garbsen, Germany)

  • Stefan Plappert

    (Institute of Product Development, Leibniz University of Hannover, 30823 Garbsen, Germany)

Abstract

Rainwater harvesting attracts growing interest from the field of municipal planning. When considering a rainwater harvesting system as a design object, questions include whether the system is designed for a single property or for a local water network serving multiple properties, what allows for the inclusion of buffer tanks and resource balancing among participants in the network, how to size the tanks, and how robust the system is in the face of changing demands. Knowledge-based engineering provides methods and a tool set for such planning objects. For this article, the authors applied techniques based on model-based and resource-based configuration and Bayesian decision networks to propose a knowledge-based engineering system for residential, networked rainwater harvesting and distribution systems. This enables designers to investigate the effects of different catchment areas, adjust or minimize the storage tank sizes in the grid and evaluate their effect on the individual harvest and the exchange with a central network buffer, evaluate the demands within a neighborhood based on a detailed consumer model also over time, and test the sensitivities of the single sinks and sources to the water grid. For urban planners, this offers the possibility, for example, to make design obligations for housing construction or for the refurbishment of settlements.

Suggested Citation

  • Paul Christoph Gembarski & Jan Melching & Stefan Plappert, 2023. "A Knowledge-Based Engineering System for the Planning of Networked Rainwater Harvesting and Distribution Systems," Sustainability, MDPI, vol. 15(11), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8636-:d:1156314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shafique, Muhammad & Kim, Reeho & Rafiq, Muhammad, 2018. "Green roof benefits, opportunities and challenges – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 757-773.
    2. Lars Hvam & Niels Henrik Mortensen & Jesper Riis, 2008. "Product Customization," Springer Books, Springer, number 978-3-540-71449-1, October.
    3. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    4. Paul Christoph Gembarski & Roland Lachmayer, 2017. "A Business Typological Framework for the Management of Product Complexity," Springer Proceedings in Business and Economics, in: Jocelyn Bellemare & Serge Carrier & Kjeld Nielsen & Frank T. Piller (ed.), Managing Complexity, chapter 0, pages 235-247, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    3. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Sojung Kim & Burchan Aydin & Sumin Kim, 2021. "Simulation Modeling of a Photovoltaic-Green Roof System for Energy Cost Reduction of a Building: Texas Case Study," Energies, MDPI, vol. 14(17), pages 1-13, September.
    5. Grazia Napoli & Rossella Corrao & Gianluca Scaccianoce & Simona Barbaro & Laura Cirrincione, 2022. "Public and Private Economic Feasibility of Green Areas as a Passive Energy Measure: A Case Study in the Mediterranean City of Trapani in Southern Italy," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    6. Minzhe Yi & Zihao Huang & Yuxiang Yu, 2022. "Creating a Sustainable E-Commerce Environment: The Impact of Product Configurator Interaction Design on Consumer Personalized Customization Experience," Sustainability, MDPI, vol. 14(23), pages 1-23, November.
    7. Bożena Staruch & Bogdan Staruch, 2021. "Competence-based assignment of tasks to workers in factories with demand-driven manufacturing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 553-565, June.
    8. Irene Zluwa & Ulrike Pitha, 2021. "The Combination of Building Greenery and Photovoltaic Energy Production—A Discussion of Challenges and Opportunities in Design," Sustainability, MDPI, vol. 13(3), pages 1-29, February.
    9. Elena Korol & Natalia Shushunova, 2022. "Analysis and Valuation of the Energy-Efficient Residential Building with Innovative Modular Green Wall Systems," Sustainability, MDPI, vol. 14(11), pages 1-13, June.
    10. Patanjal Kumar & Sachin Kumar Mangla & Yigit Kazancoglu & Ali Emrouznejad, 2023. "A decision framework for incorporating the coordination and behavioural issues in sustainable supply chains in digital economy," Annals of Operations Research, Springer, vol. 326(2), pages 721-749, July.
    11. Noemi Caltabellotta & Felicia Cavaleri & Carlo Greco & Kestutis Navickas & Carlo Scibetta & Laura Giammanco, 2019. "Integration of green roofs&walls in urban areas," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 61-78.
    12. Fabiana Frota de Albuquerque Landi & Claudia Fabiani & Anna Laura Pisello, 2021. "Experimental Winter Monitoring of a Light-Weight Green Roof Assembly for Building Retrofit," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    13. Mo Wang & Xu Zhong & Chuanhao Sun & Tong Chen & Jin Su & Jianjun Li, 2023. "Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    14. Ángel Pitarch & María José Ruá & Lucía Reig & Inés Arín, 2020. "Contribution of Roof Refurbishment to Urban Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    15. Alena Vargova & Sally Köhler & Sarina Hötzel & Bastian Schröter & Zuzana Vranayova & Daniela Kaposztasova, 2023. "Transformation of Urban Spaces: The Impact of Green Roofs in Košice, Slovakia," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
    16. Maria Luíza Santos & Cristina Matos Silva & Filipa Ferreira & José Saldanha Matos, 2023. "Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    17. Liberalesso, Tiago & Oliveira Cruz, Carlos & Matos Silva, Cristina & Manso, Maria, 2020. "Green infrastructure and public policies: An international review of green roofs and green walls incentives," Land Use Policy, Elsevier, vol. 96(C).
    18. Carlos Rey-Mahía & Felipe Pedro Álvarez-Rabanal & Luis Angel Sañudo-Fontaneda & Mario Hidalgo-Tostado & Antonio Menéndez Suárez-Inclán, 2022. "An Experimental and Numerical Approach to Multifunctional Urban Surfaces through Blue Roofs," Sustainability, MDPI, vol. 14(3), pages 1-15, February.
    19. Gianfranco Rizzo & Laura Cirrincione & Maria La Gennusa & Giorgia Peri & Gianluca Scaccianoce, 2023. "Green Roofs’ End of Life: A Literature Review," Energies, MDPI, vol. 16(2), pages 1-16, January.
    20. Fernando Alonso-Marroquin & Ghulam Qadir, 2023. "Synergy between Photovoltaic Panels and Green Roofs," Energies, MDPI, vol. 16(13), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8636-:d:1156314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.