IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8504-d1154190.html
   My bibliography  Save this article

Systematic Search Using the Proknow-C Method for the Characterization of Atmospheric Particulate Matter Using the Materials Science Techniques XRD, FTIR, XRF, and Raman Spectroscopy

Author

Listed:
  • Mauricio A. Correa-Ochoa

    (Grupo de Investigación y Laboratorio de Monitoreo Ambiental G-LIMA, Universidad de Antioquia UdeA, Calle 70 N°. 52-21, Medellín 050010, Colombia)

  • Juliana Rojas

    (Grupo de Investigación y Laboratorio de Monitoreo Ambiental G-LIMA, Universidad de Antioquia UdeA, Calle 70 N°. 52-21, Medellín 050010, Colombia)

  • Luisa M. Gómez

    (Grupo de Investigación y Laboratorio de Monitoreo Ambiental G-LIMA, Universidad de Antioquia UdeA, Calle 70 N°. 52-21, Medellín 050010, Colombia)

  • David Aguiar

    (Grupo de Investigación y Laboratorio de Monitoreo Ambiental G-LIMA, Universidad de Antioquia UdeA, Calle 70 N°. 52-21, Medellín 050010, Colombia)

  • Carlos A. Palacio-Tobón

    (Grupo Giga, Universidad de Antioquia UdeA, Calle 70 N°. 52-21, Medellín 050010, Colombia)

  • Henry A. Colorado

    (CCComposites Laboratory, Universidad de Antioquia UdeA, Calle 70 N°. 52-21, Medellín 050010, Colombia)

Abstract

Particulate matter (PM), particle pollution that can travel long distances, is a big concern because it contains liquid droplets or microscopic solids resulting in significant health issues such as respirational and cancer problems. Therefore, the characterization of these particles is very significant as a hazard to public health. PM can be identified by X-ray diffraction (XRD) and Raman spectroscopy (RS), both powerful and non-destructive technologies. RS, in particular, allows the identification of black carbon, considered one of the pollutants with the greatest influence on climate change. Another important technology for the evaluation of inorganic and organic functional groups present in PM compounds is the Fourier transform infrared spectroscopy (FTIR). X-ray fluorescence (XRF) provides elemental analysis, revealing, in many cases, the original source of the sample. In order to understand the current state of the art, the Proknow-C method was applied to track the most recent information on PM characterization. Aspects such as sample collection, filter material, characterization parameters, PM components, and the advantages and limitations of each technique are discussed. PM minerals are found to be composed of silicates, oxides, sulfates, and carbonates. The elemental components of PM are classified into five categories: marine aerosol, mineral material, anthropogenic elements, organic carbon, and elemental carbon. The XRD technique is a powerful, fast, and non-destructive tool to identify various minerals present in PM. On the other hand, the XRF technique requires minimal sample treatment, but its sensitivity is limited for the determination of trace metals and some relevant environmental elements. FTIR spectroscopy is able to identify and quantify all organic functional groups present in atmospheric PM. Despite its advantages, a proper choice of calibration method is crucial to ensure its effectiveness. RS is fast and simple, although it only detects Raman-active functional groups. These are some of the advantages and limitations of these techniques addressed in the following review article.

Suggested Citation

  • Mauricio A. Correa-Ochoa & Juliana Rojas & Luisa M. Gómez & David Aguiar & Carlos A. Palacio-Tobón & Henry A. Colorado, 2023. "Systematic Search Using the Proknow-C Method for the Characterization of Atmospheric Particulate Matter Using the Materials Science Techniques XRD, FTIR, XRF, and Raman Spectroscopy," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8504-:d:1154190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nasser M. Hamdan & Hussain Alawadhi & Najeh Jisrawi & Mohamed Shameer, 2018. "Characterization of Fine Particulate Matter in Sharjah, United Arab Emirates Using Complementary Experimental Techniques," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    2. Mauricio A. Correa & Santiago A. Franco & Luisa M. Gómez & David Aguiar & Henry A. Colorado, 2023. "Characterization Methods of Ions and Metals in Particulate Matter Pollutants on PM2.5 and PM10 Samples from Several Emission Sources," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    3. de Carvalho, Gustavo Dambiski Gomes & Sokulski, Carla Cristiane & da Silva, Wesley Vieira & de Carvalho, Hélio Gomes & de Moura, Rafael Vignoli & de Francisco, Antonio Carlos & da Veiga, Claudimar Per, 2020. "Bibliometrics and systematic reviews: A comparison between the Proknow-C and the Methodi Ordinatio," Journal of Informetrics, Elsevier, vol. 14(3).
    4. Mbalenhle Mpanza & Elhadi Adam & Raeesa Moolla, 2020. "Dust Deposition Impacts at a Liquidated Gold Mine Village: Gauteng Province in South Africa," IJERPH, MDPI, vol. 17(14), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauricio A. Correa-Ochoa & Roxana Bedoya & Luisa M. Gómez & David Aguiar & Carlos A. Palacio-Tobón & Henry A. Colorado, 2023. "A Review on the Characterization and Measurement of the Carbonaceous Fraction of Particulate Matter," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    2. Khalid Ahmed Al-Ansari & Ahmet Faruk Aysan, 2021. "More than ten years of Blockchain creation: How did we use the technology and which direction is the research heading? [Plus de dix ans de création Blockchain : Comment avons-nous utilisé la techno," Working Papers hal-03343048, HAL.
    3. Vivek Warke & Satish Kumar & Arunkumar Bongale & Ketan Kotecha, 2021. "Sustainable Development of Smart Manufacturing Driven by the Digital Twin Framework: A Statistical Analysis," Sustainability, MDPI, vol. 13(18), pages 1-49, September.
    4. Vilker Zucolotto Pessin & Luciana Harue Yamane & Renato Ribeiro Siman, 2022. "Smart bibliometrics: an integrated method of science mapping and bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3695-3718, June.
    5. Gustavo Dambiski Gomes de Carvalho & Luis Mauricio Martins de Resende & Joseane Pontes & Hélio Gomes de Carvalho & Leozenir Mendes Betim, 2021. "Innovation and Management in MSMEs: A Literature Review of Highly Cited Papers," SAGE Open, , vol. 11(4), pages 21582440211, October.
    6. Marco Antonio Cruz-Morato & Josefa García-Mestanza & Carmen Dueñas-Zambrana, 2021. "Special Employment Centres, Time Factor and Sustainable Human Resources Management in Spanish Hotel Industry: Can Corporate Social Marketing Improve the Labour Situation of People with Disabilities?," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    7. Jorge Alfredo Cerqueira-Streit & Gustavo Yuho Endo & Patricia Guarnieri & Luciano Batista, 2021. "Sustainable Supply Chain Management in the Route for a Circular Economy: An Integrative Literature Review," Logistics, MDPI, vol. 5(4), pages 1-21, November.
    8. Helton Rogger Regatieri & Oswaldo Hideo Ando Junior & José Ricardo Cezar Salgado, 2022. "Systematic Review of Lithium-Ion Battery Recycling Literature Using ProKnow-C and Methodi Ordinatio," Energies, MDPI, vol. 15(4), pages 1-23, February.
    9. Pech, Gerson & Delgado, Catarina, 2021. "Screening the most highly cited papers in longitudinal bibliometric studies and systematic literature reviews of a research field or journal: Widespread used metrics vs a percentile citation-based app," Journal of Informetrics, Elsevier, vol. 15(3).
    10. Pura Marín Sanleandro & Antonio Sánchez Navarro & Elvira Díaz-Pereira & Francisco Bautista Zuñiga & Miriam Romero Muñoz & María José Delgado Iniesta, 2018. "Assessment of Heavy Metals and Color as Indicators of Contamination in Street Dust of a City in SE Spain: Influence of Traffic Intensity and Sampling Location," Sustainability, MDPI, vol. 10(11), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8504-:d:1154190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.