IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7983-d1146515.html
   My bibliography  Save this article

Grain-Size Analysis of Middle Cretaceous Sandstone Reservoirs, the Wasia Formation, Riyadh Province, Saudi Arabia

Author

Listed:
  • Rayan Khalil

    (Faculty of Earth Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

Grain-size analysis is a significant descriptive method to determine and evaluate depositional environments and hydrodynamic conditions in addition to classifying sedimentary rocks. In this study, grain-size analysis was conducted using dry-sieving procedures on fourteen representative sandstone samples from the Wasia Formation, a thick water aquifer and a hydrocarbon reservoir. Hydrodynamic conditions and depositional environments were determined using bivariate plots, linear discriminate function (LDF), log probability, and Passega diagram. The results reveal that the lower outcrop section consists of coarse- to medium-grained sandstone with a majority being poorly sorted, while the upper section is made up of medium- to medium-well-sorted fine-grained sandstone units. The sediments have a unimodal distribution of 2∅ (all the lower section) and 3∅ (most of the upper section), while two beds have a bimodal of 2 and 3∅. The lower section has wide range skewness with mainly mesokurtic curves, while the upper section is near-symmetrical to coarse-skewed but mostly leptokurtic. Additionally, log probability plots and the Passega diagram show that the majority of the indicative sediments were transported via one to two saltation levels, while fine-grains were transported via suspension. The results of the LDF method are predominantly indicative of aeolian, marine, and fluvial environments.

Suggested Citation

  • Rayan Khalil, 2023. "Grain-Size Analysis of Middle Cretaceous Sandstone Reservoirs, the Wasia Formation, Riyadh Province, Saudi Arabia," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7983-:d:1146515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salih Muhammad Awadh & Heba Al-Mimar & Zaher Mundher Yaseen, 2021. "Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilian Rodrigues Ribeiro & Morgana Scaramussa Gonçalves & Daniel Soares Ferreira & Dalila Costa Gonçalves & Samira Luns Hatum Almeida & Ramon Amaro Sales & Felipe Cunha Siman & Luan Peroni Venancio & , 2022. "Water demand of central pivot-irrigated areas in Bahia, Brazil: management of water resources applied to sustainable production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12340-12366, October.
    2. Zhihao Xu & Zhiqiang Lv & Jianbo Li & Anshuo Shi, 2022. "A Novel Approach for Predicting Water Demand with Complex Patterns Based on Ensemble Learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4293-4312, September.
    3. Abdulnoor A. J. Ghanim & Ahmed M. Al-Areeq & Mohammed Benaafi & Mohammed S. Al-Suwaiyan & Amran A. Al Aghbari & Mana Alyami, 2023. "Mapping Groundwater Potential Zones in the Habawnah Basin of Southern Saudi Arabia: An AHP- and GIS-based Approach," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    4. Abdullah Alodah, 2023. "Towards Sustainable Water Resources Management Considering Climate Change in the Case of Saudi Arabia," Sustainability, MDPI, vol. 15(20), pages 1-29, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7983-:d:1146515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.