IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p437-d1016639.html
   My bibliography  Save this article

Optimal Vertiport Airspace and Approach Control Strategy for Urban Air Mobility (UAM)

Author

Listed:
  • Kyowon Song

    (Department of Future Mobility, Kookmin University, Seoul 02707, Republic of Korea)

Abstract

Recently, urban air mobility (UAM), a new transportation system that can expand urban mobility from 2D to 3D, has been in the spotlight all over the world. For successful implementation of UAM, not only eVTOL aircraft development but also various systems such as UAM traffic management are required; however, research on these areas is still insufficient. Based on the BQA model, in this study, we introduce the balanced branch queuing approach (BBQA) model as a new approach control model that can improve operational efficiency by enabling the landing order to be changed more easily. Through simulation, its effectiveness was verified. The proposed BBQA achieved the identical airspace safety as the BQA model, in addition to showing a superior result to the SBA model in on-time performance (OTP). The vertiport airspace blueprint concept and approach control model proposed in this study are expected to play an important role in future studies in the area of air traffic management in UAM.

Suggested Citation

  • Kyowon Song, 2022. "Optimal Vertiport Airspace and Approach Control Strategy for Urban Air Mobility (UAM)," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:437-:d:1016639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rimjha, Mihir & Hotle, Susan & Trani, Antonio & Hinze, Nicolas, 2021. "Commuter demand estimation and feasibility assessment for Urban Air Mobility in Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 506-524.
    2. Tobias Biehle, 2022. "Social Sustainable Urban Air Mobility in Europe," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "SP surveys to estimate Airport Shuttle demand in an Urban Air Mobility context," Transport Policy, Elsevier, vol. 141(C), pages 129-139.
    2. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "New infrastructures for Urban Air Mobility systems: A systematic review on vertiport location and capacity," Journal of Air Transport Management, Elsevier, vol. 112(C).
    3. Coppola, Pierluigi & De Fabiis, Francesco & Silvestri, Fulvio, 2024. "Urban Air Mobility (UAM): Airport shuttles or city-taxis?," Transport Policy, Elsevier, vol. 150(C), pages 24-34.
    4. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Wu, Lingxiao & Li, Ang, 2024. "Integrated optimisation of strategic planning and service operations for urban air mobility systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    5. Long, Qi & Ma, Jun & Jiang, Feifeng & Webster, Christopher John, 2023. "Demand analysis in urban air mobility: A literature review," Journal of Air Transport Management, Elsevier, vol. 112(C).
    6. Jaeho Yoo & Yunseon Choe & Soo-i Rim, 2022. "Risk Perceptions Using Urban and Advanced Air Mobility (UAM/AAM) by Applying a Mixed Method Approach," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    7. Boddupalli, Sreekar-Shashank & Garrow, Laurie A. & German, Brian J. & Newman, Jeffrey P., 2024. "Mode choice modeling for an electric vertical takeoff and landing (eVTOL) air taxi commuting service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    8. Annitsa Koumoutsidi & Ioanna Pagoni & Amalia Polydoropoulou, 2022. "A New Mobility Era: Stakeholders’ Insights regarding Urban Air Mobility," Sustainability, MDPI, vol. 14(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:437-:d:1016639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.