IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p413-d1016157.html
   My bibliography  Save this article

A Review of Ontology-Based Safety Management in Construction

Author

Listed:
  • Wei Tong Chen

    (Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Douliu City 64002, Taiwan
    Department of Civil & Construction Engineering, National Yunlin University of Science and Technology, Douliu City 64002, Taiwan)

  • Theresia Avila Bria

    (Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Douliu City 64002, Taiwan
    Department of Civil Engineering, State Polytechnic of Kupang, Kupang 85258, Indonesia)

Abstract

The construction industry is one of the most dangerous industries in terms of safety performance, with practitioners and experts actively developing various solutions to reduce accident frequency and severity. However, accident information is collected in a wide range of formats by various elements in the construction industry, leading to interoperability issues and poor productivity due to the difficulties of sharing and reusing information. To improve the management of various types of safety management (SM) records in the construction industry, practitioners and researchers have adopted ontological methods. This paper summarizes the SM trends in construction management, along with gaps and opportunities for future work. A data processing framework is developed with a phase research for objective and subjective topic analysis from a collection of articles from 2012–2022 on topics relevant to the use of ontology in SM. The analysis focuses on the ontological life cycle (development, integration, and application), revealing an increasing trend of ontology-based SM (ObSM) research in the SM maintenance phase. Increasing case size and system automation is needed for future ontology-based SM optimization. The findings of the study will help to gain a thorough knowledge of ObSM, which will increase interest in effectiveness and the use of engineering and analytical techniques in SM.

Suggested Citation

  • Wei Tong Chen & Theresia Avila Bria, 2022. "A Review of Ontology-Based Safety Management in Construction," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:413-:d:1016157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akeem Pedro & Anh-Tuan Pham-Hang & Phong Thanh Nguyen & Hai Chien Pham, 2022. "Data-Driven Construction Safety Information Sharing System Based on Linked Data, Ontologies, and Knowledge Graph Technologies," IJERPH, MDPI, vol. 19(2), pages 1-18, January.
    2. Xiaoyan Jiang & Sai Wang & Jie Wang & Sainan Lyu & Martin Skitmore, 2020. "A Decision Method for Construction Safety Risk Management Based on Ontology and Improved CBR: Example of a Subway Project," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    3. Fang, Chao & Marle, Franck & Zio, Enrico & Bocquet, Jean-Claude, 2012. "Network theory-based analysis of risk interactions in large engineering projects," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Lipeng & Wang, Xueqing & Zhao, Heng & Li, Mengnan, 2022. "Interactions among safety risks in metro deep foundation pit projects: An association rule mining-based modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Liu, Zhixue & Ding, Ronggui & Wang, Lei & Song, Rui & Song, Xinyi, 2023. "Cooperation in an uncertain environment: The impact of stakeholders' concerted action on collaborative innovation projects risk management," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    3. Arnaud Mignan & Ziqi Wang, 2020. "Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics," IJERPH, MDPI, vol. 17(19), pages 1-21, October.
    4. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    5. Pfeifer, Jeremy & Barker, Kash & Ramirez-Marquez, Jose E. & Morshedlou, Nazanin, 2015. "Quantifying the risk of project delays with a genetic algorithm," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 34-44.
    6. Antonio José Carpio de los Pinos & María de las Nieves González García & José Antonio Soriano & Benito Yáñez Araque, 2021. "Development of the Level of Preventive Action Method by Observation of the Characteristic Value for the Assessment of Occupational Risks on Construction Sites," IJERPH, MDPI, vol. 18(16), pages 1-27, August.
    7. Ünsal-Altuncan, Izel & Vanhoucke, Mario, 2024. "A hybrid forecasting model to predict the duration and cost performance of projects with Bayesian Networks," European Journal of Operational Research, Elsevier, vol. 315(2), pages 511-527.
    8. Ma, Xiaoxue & Deng, Wanyi & Qiao, Weiliang & Lan, He, 2022. "A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    9. Yadav, Jitendra & Yadav, Rambalak & Sahore, Nidhi & Mendiratta, Aparna, 2023. "Digital social engagements and knowledge sharing among sports fans: Role of interaction, identification, and interface," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    10. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Feng Li & Pengchao Zhang & Xin Huang & Jiabin Sun & Qian Li, 2022. "Emergency Decision-Making for Middle Route of South-to-North Water Diversion Project Using Case-Based Reasoning and Prospect Theory," Sustainability, MDPI, vol. 14(21), pages 1-29, October.
    12. Jianhua Cheng & Xiaolong Yang & Hui Wang & Hujun Li & Xuan Lin & Yapeng Guo, 2022. "Evaluation of the Emergency Capability of Subway Shield Construction Based on Cloud Model," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    13. Antonio José Carpio-de los Pinos & María de las Nieves González-García & Ligia Cristina Pentelhão & J. Santos Baptista, 2021. "Zero-Risk Interpretation in the Level of Preventive Action Method Implementation for Health and Safety in Construction Sites," IJERPH, MDPI, vol. 18(7), pages 1-23, March.
    14. Nguyen, Son & Shu-Ling Chen, Peggy & Du, Yuquan, 2022. "Risk assessment of maritime container shipping blockchain-integrated systems: An analysis of multi-event scenarios," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    15. Zhang, Yanlu & Yang, Naiding, 2018. "Vulnerability analysis of interdependent R&D networks under risk cascading propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1056-1068.
    16. Yuanli Li & Pengcheng Xiang & Kairui You & Jin Guo & Zhaowen Liu & Hong Ren, 2021. "Identifying the Key Risk Factors of Mega Infrastructure Projects from an Extended Sustainable Development Perspective," IJERPH, MDPI, vol. 18(14), pages 1-29, July.
    17. Zhao, Zhen-Yu & Chen, Yu-Long & Li, Heng, 2019. "What affects the development of renewable energy power generation projects in China: ISM analysis," Renewable Energy, Elsevier, vol. 131(C), pages 506-517.
    18. Ackermann, Fran & Howick, Susan & Quigley, John & Walls, Lesley & Houghton, Tom, 2014. "Systemic risk elicitation: Using causal maps to engage stakeholders and build a comprehensive view of risks," European Journal of Operational Research, Elsevier, vol. 238(1), pages 290-299.
    19. Zhang, Yanlu & Yang, Naiding, 2013. "Research on robustness of R&D network under cascading propagation of risk with gray attack information," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 1-8.
    20. Yuanwen Han & Jiang Shen & Xuwei Zhu & Bang An & Fusheng Liu & Xueying Bao, 2024. "Study on the Mechanism of Safety Risk Propagation in Subway Construction Projects," Sustainability, MDPI, vol. 16(2), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:413-:d:1016157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.