IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v170y2015ipap34-44.html
   My bibliography  Save this article

Quantifying the risk of project delays with a genetic algorithm

Author

Listed:
  • Pfeifer, Jeremy
  • Barker, Kash
  • Ramirez-Marquez, Jose E.
  • Morshedlou, Nazanin

Abstract

Of interest in project management is the (i) quantification of the risk associated with project performance and the (ii) identification of the project tasks that contribute most to that risk. Risk in this work addresses delays in project completion. The tasks and precendences are represented with nodes and links, respectively, in a project network whose tasks (i) have stochastic completion times that (ii) are subject to disruptions. An optimization problem is developed to maximize project delay subject to particular stochastic task disruptions, and a genetic algorithm is introduce to identify the critical tasks which lead to the maximum risk of project delay. A small project of 40 tasks and large project of 800 tasks are analyzed. Primary conclusions are (i) that critical tasks need not necessarily be on the critical path if they are subject to considerable uncertainty, and (ii) that project complexity (network topology) matters more in the performance of the algorithm than the number of tasks (network size). In fact, the genetic algorithm solution works well for large-scale projects whose schedules cannot be resolved with conventional techniques. Focus is given to the performance of the algorithm for this project risk context.

Suggested Citation

  • Pfeifer, Jeremy & Barker, Kash & Ramirez-Marquez, Jose E. & Morshedlou, Nazanin, 2015. "Quantifying the risk of project delays with a genetic algorithm," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 34-44.
  • Handle: RePEc:eee:proeco:v:170:y:2015:i:pa:p:34-44
    DOI: 10.1016/j.ijpe.2015.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527315003345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2015.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erik L. Demeulemeester & Willy S. Herroelen, 1997. "New Benchmark Results for the Resource-Constrained Project Scheduling Problem," Management Science, INFORMS, vol. 43(11), pages 1485-1492, November.
    2. Rainer Kolisch & Arno Sprecher & Andreas Drexl, 1995. "Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems," Management Science, INFORMS, vol. 41(10), pages 1693-1703, October.
    3. Agrawal, M. K. & Elmaghraby, S. E. & Herroelen, W. S., 1996. ": A generator of testsets for project activity nets," European Journal of Operational Research, Elsevier, vol. 90(2), pages 376-382, April.
    4. KIlIç, Murat & Ulusoy, Gündüz & Serifoglu, Funda Sivrikaya, 2008. "A bi-objective genetic algorithm approach to risk mitigation in project scheduling," International Journal of Production Economics, Elsevier, vol. 112(1), pages 202-216, March.
    5. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2008. "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 495-508, March.
    6. Erik Demeulemeester & Willy Herroelen, 1992. "A Branch-and-Bound Procedure for the Multiple Resource-Constrained Project Scheduling Problem," Management Science, INFORMS, vol. 38(12), pages 1803-1818, December.
    7. Vanhoucke, Mario & Coelho, Jose & Debels, Dieter & Maenhout, Broos & Tavares, Luis V., 2008. "An evaluation of the adequacy of project network generators with systematically sampled networks," European Journal of Operational Research, Elsevier, vol. 187(2), pages 511-524, June.
    8. Brucker, Peter & Knust, Sigrid & Schoo, Arno & Thiele, Olaf, 1998. "A branch and bound algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 107(2), pages 272-288, June.
    9. Mori, Masao & Tseng, Ching Chih, 1997. "A genetic algorithm for multi-mode resource constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 100(1), pages 134-141, July.
    10. Fang, Chao & Marle, Franck & Zio, Enrico & Bocquet, Jean-Claude, 2012. "Network theory-based analysis of risk interactions in large engineering projects," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 1-10.
    11. Nashwan Dawood, 1998. "Estimating project and activity duration: a risk management approach using network analysis," Construction Management and Economics, Taylor & Francis Journals, vol. 16(1), pages 41-48.
    12. Aristide Mingozzi & Vittorio Maniezzo & Salvatore Ricciardelli & Lucio Bianco, 1998. "An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation," Management Science, INFORMS, vol. 44(5), pages 714-729, May.
    13. Sprecher, Arno, 1996. "Solving the RCPSP efficiently at modest memory requirements," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 425, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. James H. Patterson, 1984. "A Comparison of Exact Approaches for Solving the Multiple Constrained Resource, Project Scheduling Problem," Management Science, INFORMS, vol. 30(7), pages 854-867, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jolanta Tamošaitienė & Vahidreza Yousefi & Hamed Tabasi, 2021. "Project Portfolio Construction Using Extreme Value Theory," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    2. Jiří Skalický & Jiří Vacek & Marek Čech & Martin Januška, 2017. "Project as a System and its Management [Projekt jako systém a jeho řízení]," Acta Informatica Pragensia, Prague University of Economics and Business, vol. 2017(1), pages 4-19.
    3. Liu, Zhixue & Ding, Ronggui & Wang, Lei & Song, Rui & Song, Xinyi, 2023. "Cooperation in an uncertain environment: The impact of stakeholders' concerted action on collaborative innovation projects risk management," Technological Forecasting and Social Change, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    2. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    3. Sönke Hartmann, 1998. "A competitive genetic algorithm for resource‐constrained project scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(7), pages 733-750, October.
    4. Arno Sprecher, 2000. "Scheduling Resource-Constrained Projects Competitively at Modest Memory Requirements," Management Science, INFORMS, vol. 46(5), pages 710-723, May.
    5. Hartmann, Sönke, 1999. "Self-adapting genetic algorithms with an application to project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 506, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Klein, Robert & Scholl, Armin, 1999. "Computing lower bounds by destructive improvement: An application to resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 112(2), pages 322-346, January.
    7. Van Eynde, Rob & Vanhoucke, Mario, 2022. "New summary measures and datasets for the multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 853-868.
    8. Sophie Demassey & Christian Artigues & Philippe Michelon, 2005. "Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 52-65, February.
    9. Guo, Weikang & Vanhoucke, Mario & Coelho, José, 2023. "A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 579-595.
    10. Schirmer, Andreas & Riesenberg, Sven, 1998. "Class-based control schemes for parameterized project scheduling heuristics," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 471, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
    12. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    13. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    14. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    16. Dayal Madhukar & Verma, Sanjay, 2014. "Breadth-first and Best-first Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2014-10-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    17. Carlier, Jacques & Neron, Emmanuel, 2000. "A new LP-based lower bound for the cumulative scheduling problem," European Journal of Operational Research, Elsevier, vol. 127(2), pages 363-382, December.
    18. Dayal Madhukar & Verma, Sanjay, 2015. "Multi-processor Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2015-03-25, Indian Institute of Management Ahmedabad, Research and Publication Department.
    19. Mario Vanhoucke & Erik Demeulemeester & Willy Herroelen, 2001. "On Maximizing the Net Present Value of a Project Under Renewable Resource Constraints," Management Science, INFORMS, vol. 47(8), pages 1113-1121, August.
    20. Andrei Horbach, 2010. "A Boolean satisfiability approach to the resource-constrained project scheduling problem," Annals of Operations Research, Springer, vol. 181(1), pages 89-107, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:170:y:2015:i:pa:p:34-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.