IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p275-d1013499.html
   My bibliography  Save this article

Numerical Study on Flow and Noise Characteristics of an NACA0018 Airfoil with a Porous Trailing Edge

Author

Listed:
  • Weijun Zhu

    (College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China)

  • Jiaying Liu

    (College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China
    Zhejiang Windey Co., Ltd., Hangzhou 310012, China)

  • Zhenye Sun

    (College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China)

  • Jiufa Cao

    (College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China
    Department of Wind Energy, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark)

  • Guangxing Guo

    (College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China)

  • Wenzhong Shen

    (College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China)

Abstract

An airfoil with a porous trailing edge has a low noise emission; thus, using a porous medium is a good technique for further reduction of wind turbine noise. In this paper, to reduce airfoil trailing edge noise while minimizing the negative influence of a porous medium on aerodynamic performance, a new filling method is proposed such that a porous medium is only used in the suction side half of the trailing edge, which is more sensitive to the noise generation. The large eddy simulation (LES) technique for flow and the Ffowcs Williams and Hawkings (FW-H) method for acoustics are used. At a Reynolds number of 2.63 × 10 5 and various angles of attack, an NACA0018 airfoil profile with a porous trailing edge covering 20% of the chord is studied under two porous configurations, namely a fully porous and a suction-side porous trailing edge type. The results show that the flow direction, velocity magnitude, and their distributions along the boundary layer of the two porous airfoils are significantly modified due to the presence of the porous medium. The fluctuation of the pressure coefficient and the increase in the boundary layer thickness are significant at low angles of attack. As compared to the solid airfoil counterpart, the noise radiation from the newly proposed suction-side porous airfoil achieves a noise reduction of 4.3 dB at an angle of attack α = 0°, and a noise reduction of 4.07 dB at an angle of attack α = 2°.

Suggested Citation

  • Weijun Zhu & Jiaying Liu & Zhenye Sun & Jiufa Cao & Guangxing Guo & Wenzhong Shen, 2022. "Numerical Study on Flow and Noise Characteristics of an NACA0018 Airfoil with a Porous Trailing Edge," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:275-:d:1013499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodrigues, S.S. & Marta, A.C., 2019. "On addressing wind turbine noise with after-market shape blade add-ons," Renewable Energy, Elsevier, vol. 140(C), pages 602-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José R. Dorrego & Armando Ríos & Quetzalcoatl Hernandez-Escobedo & Rafael Campos-Amezcua & Reynaldo Iracheta & Orlando Lastres & Pascual López & Antonio Verde & Liliana Hechavarria & Miguel-Angel Pere, 2021. "Theoretical and Experimental Analysis of Aerodynamic Noise in Small Wind Turbines," Energies, MDPI, vol. 14(3), pages 1-21, January.
    2. Hector G. Parra & Hernan D. Ceron & William Gomez & Elvis E. Gaona, 2023. "Experimental Analysis of Oscillatory Vortex Generators in Wind Turbine Blade," Energies, MDPI, vol. 16(11), pages 1-14, May.
    3. Mittal, Prateek & Christopoulos, Giorgos & Subramanian, Sriram, 2024. "Energy enhancement through noise minimization using acoustic metamaterials in a wind farm," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:275-:d:1013499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.