IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p136-d1011058.html
   My bibliography  Save this article

Research on BIPV in Office and Public Utility Buildings in Aesthetic and Utility Context

Author

Listed:
  • Janusz Marchwiński

    (Faculty of Architecture, University of Ecology and Management in Warsaw, 00-792 Warszawa, Poland)

Abstract

The idea of the article is to examine the perception of building-integrated photovoltaics (BIPV) by users of buildings in which BIPV has been applied. The study aims at determining the acceptance degree as well as problem areas related to the use of BIPV within façades in the aesthetic and utility context. The article includes survey research conducted among 232 employees working in six office and public buildings with BIPV in Poland. The buildings were selected so that the PV modules within their façades were visible both outside and inside the building. For this reason, two groups of buildings were chosen for the study: those with PV modules as external glazing and with an external PV shelves (three buildings each). The research results indicate differences in the perception of the aesthetic, semantic, and functional roles of BIPV depending on the aforementioned BIPV application method, the observation place (outside or inside the building), and employee characteristics, i.e., groups divided regarding such aspects as their age and time spent in the room with BIPV. The research novelty is in examining the influence of BIPV on users’ reactions in their workplace in terms of aesthetic and utility issues. The research includes post-occupancy evaluation method (POE), which is for the first time used in relation to BIPV in office and public utility buildings. The research can prove useful for investors and designers at the planning and design concept stage. The outcomes constitute a practical source of knowledge for BIPV manufacturers.

Suggested Citation

  • Janusz Marchwiński, 2022. "Research on BIPV in Office and Public Utility Buildings in Aesthetic and Utility Context," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:136-:d:1011058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuria Martín-Chivelet & Juan Carlos Gutiérrez & Miguel Alonso-Abella & Faustino Chenlo & José Cuenca, 2018. "Building Retrofit with Photovoltaics: Construction and Performance of a BIPV Ventilated Façade," Energies, MDPI, vol. 11(7), pages 1-15, July.
    2. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. María Jesús Montero-Parejo & Lorenzo García Moruno & Antonio Manuel Reyes Rodríguez & Julio Hernández Blanco & Jacinto Garrido Velarde, 2020. "Analysis of Façade Color and Cost to Improve Visual Integration of Buildings in the Rural Environment," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    4. Daniel Efurosibina Attoye & Kheira Anissa Tabet Aoul & Ahmed Hassan, 2017. "A Review on Building Integrated Photovoltaic Façade Customization Potentials," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Simon Ravyts & Mauricio Dalla Vecchia & Giel Van den Broeck & Johan Driesen, 2019. "Review on Building-Integrated Photovoltaics Electrical System Requirements and Module-Integrated Converter Recommendations," Energies, MDPI, vol. 12(8), pages 1-21, April.
    3. Khencha Khadidja & Biara Ratiba Wided & Belmili Hocine, 2020. "Techno-economic study of BIPV in typical Sahara region in Algeria," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 9(1), pages 27-57, September.
    4. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    5. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    6. Liu, Ruimiao & Liu, Zhongbing & Xiong, Wei & Zhang, Ling & Zhao, Chengliang & Yin, Yingde, 2024. "Performance simulation and optimization of building façade photovoltaic systems under different urban building layouts," Energy, Elsevier, vol. 288(C).
    7. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    8. Siu-Kit Lau & Vesna Kosorić & Monika Bieri & André.M. Nobre, 2021. "Identification of Factors Influencing Development of Photovoltaic (PV) Implementation in Singapore," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    9. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    10. Hao Tian & Wei Zhang & Lingzhi Xie & Zhichun Ni & Qingzhu Wei & Xinwen Wu & Wei Wang & Mo Chen, 2019. "Thermal Comfort Evaluation of Rooms Installed with STPV Windows," Energies, MDPI, vol. 12(5), pages 1-15, February.
    11. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    12. Suzana Domjan & Lenart Petek & Ciril Arkar & Sašo Medved, 2020. "Experimental Study on Energy Efficiency of Multi-Functional BIPV Glazed Façade Structure during Heating Season," Energies, MDPI, vol. 13(11), pages 1-19, June.
    13. Gonçalves, Juliana E. & Montazeri, Hamid & van Hooff, Twan & Saelens, Dirk, 2021. "Performance of building integrated photovoltaic facades: Impact of exterior convective heat transfer," Applied Energy, Elsevier, vol. 287(C).
    14. Hao Tian & Wei Zhang & Lingzhi Xie & Yupeng Wu & Yanyi Sun & Mo Chen & Wei Wang & Xinwen Wu, 2018. "Study on the Energy Saving Potential for Semi-Transparent PV Window in Southwest China," Energies, MDPI, vol. 11(11), pages 1-13, November.
    15. Alessandro Cannavale & Francesco Martellotta & Francesco Fiorito & Ubaldo Ayr, 2020. "The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices," Energies, MDPI, vol. 13(8), pages 1-24, April.
    16. Khaled Galal Ahmed & Mona Megahed, 2022. "A Simplified Method for BIPV Retrofitting of Emirati Public Housing with Preserved Architectural Identity: A Pilot Study," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    17. Hyung Jun An & Jong Ho Yoon & Young Sub An & Eunnyeong Heo, 2018. "Heating and Cooling Performance of Office Buildings with a-Si BIPV Windows Considering Operating Conditions in Temperate Climates: The Case of Korea," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    18. Martin Spiller & Corinna Müller & Zara Mulholland & Paraskevi Louizidou & Frithjof C. Küpper & Kevin Knosala & Peter Stenzel, 2022. "Reducing Carbon Emissions from the Tourist Accommodation Sector on Non-Interconnected Islands: A Case Study of a Medium-Sized Hotel in Rhodes, Greece," Energies, MDPI, vol. 15(10), pages 1-24, May.
    19. Ke, Wei & Ji, Jie & Wang, Chuyao & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Lin, Yuan, 2022. "Comparative analysis on the electrical and thermal performance of two CdTe multi-layer ventilated windows with and without a middle PCM layer: A preliminary numerical study," Renewable Energy, Elsevier, vol. 189(C), pages 1306-1323.
    20. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:136-:d:1011058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.