RETRACTED: Durability Enhancement of Sustainable Concrete Composites Comprising Waste Metalized Film Food Packaging Fibers and Palm Oil Fuel Ash
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fahed Alrshoudi & Hossein Mohammadhosseini & Mahmood Md. Tahir & Rayed Alyousef & Hussam Alghamdi & Yousef R. Alharbi & Abdulaziz Alsaif, 2020. "Sustainable Use of Waste Polypropylene Fibers and Palm Oil Fuel Ash in the Production of Novel Prepacked Aggregate Fiber-Reinforced Concrete," Sustainability, MDPI, vol. 12(12), pages 1-14, June.
- Fahad ul Rehman Abro & Abdul Salam Buller & Tariq Ali & Zain Ul-Abdin & Zaheer Ahmed & Noor Ahmed Memon & Ali Raza Lashari, 2021. "Autogenous Healing of Cracked Mortar Using Modified Steady-State Migration Test against Chloride Penetration," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gaurav Thakur & Yatendra Singh & Rajesh Singh & Chander Prakash & Kuldeep K. Saxena & Alokesh Pramanik & Animesh Basak & Shankar Subramaniam, 2022. "Development of GGBS-Based Geopolymer Concrete Incorporated with Polypropylene Fibers as Sustainable Materials," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Madad Ali & Maria Jade Catalan Opulencia & Teddy Chandra & Stefani Chandra & Iskandar Muda & Rui Dias & Paitoon Chetthamrongchai & Abduladheem Turki Jalil, 2022. "An Environmentally Friendly Solution for Waste Facial Masks Recycled in Construction Materials," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
- Shi Ying Kwek & Hanizam Awang, 2021. "Utilisation of Recycled Silt from Water Treatment and Palm Oil Fuel Ash as Geopolymer Artificial Lightweight Aggregate," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
More about this item
Keywords
sustainable concrete composites; waste metalized polypropylene fibers; strength properties; rapid chloride penetration; electrical resistivity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5253-:d:802955. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.