IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5197-d801994.html
   My bibliography  Save this article

Economic and Environmental Potential of Wire-Arc Additive Manufacturing

Author

Listed:
  • Manuel Dias

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • João P. M. Pragana

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Bruna Ferreira

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Inês Ribeiro

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Carlos M. A. Silva

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

Abstract

Since its creation, Additive Manufacturing (AM) has experienced a tremendous growth particularly over the last decade due to the industrial paradigm shift intended for improving conventional manufacturing procedures. This work is focused on an emerging AM process known as Wire-Arc Additive Manufacturing ( WAAM ) to assess its potential for further applications involving metallic costumer-oriented parts. Contrary to most AM processes, WAAM allows deposition of material layer-by-layer to be accomplished under high deposition rates, low production times and near 100% material efficiency using accessible equipment. The work stems from evaluating the economic viability in the production of parts by WAAM as an alternative for conventional processes such as those used in traditional subtractive approaches. For that purpose, a process-based cost model (PBCM) was developed for estimating production costs using a strong technological approach. The PBCM was tested with the production of a case study part by WAAM and its environmental impact was further assessed through life cycle assessment (LCA). Results show that WAAM can be economically and environmentally viable within specific industrial contexts. Moreover, further developments and optimizations of process variables and equipment will allow this technology to mature into tackling novel production challenges in a time and cost-effective manner.

Suggested Citation

  • Manuel Dias & João P. M. Pragana & Bruna Ferreira & Inês Ribeiro & Carlos M. A. Silva, 2022. "Economic and Environmental Potential of Wire-Arc Additive Manufacturing," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5197-:d:801994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhichao Liu & Qiuhong Jiang & Fuda Ning & Hoyeol Kim & Weilong Cong & Changxue Xu & Hong-chao Zhang, 2018. "Investigation of Energy Requirements and Environmental Performance for Additive Manufacturing Processes," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    2. Abdullah Alfaify & Mustafa Saleh & Fawaz M. Abdullah & Abdulrahman M. Al-Ahmari, 2020. "Design for Additive Manufacturing: A Systematic Review," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira, Victor J. & Wolff, Deidre & Hornés, Aitor & Morata, Alex & Torrell, M. & Tarancón, Albert & Corchero, Cristina, 2021. "5 kW SOFC stack via 3D printing manufacturing: An evaluation of potential environmental benefits," Applied Energy, Elsevier, vol. 291(C).
    2. Andrea Salandin & Alberto Quintana-Gallardo & Vicente Gómez-Lozano & Ignacio Guillén-Guillamón, 2022. "The First 3D-Printed Building in Spain: A Study on Its Acoustic, Thermal and Environmental Performance," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    3. Elham Sharifi & Atanu Chaudhuri & Brian Vejrum Waehrens & Lasse Guldborg Staal & Saeed Davoudabadi Farahani, 2021. "Assessing the Suitability of Freeform Injection Molding for Low Volume Injection Molded Parts: A Design Science Approach," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    4. Fawaz M. Abdullah & Abdulrahman M. Al-Ahmari & Saqib Anwar, 2023. "Analyzing Interdependencies among Influencing Factors in Smart Manufacturing," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    5. Gokan May & Foivos Psarommatis, 2023. "Maximizing Energy Efficiency in Additive Manufacturing: A Review and Framework for Future Research," Energies, MDPI, vol. 16(10), pages 1-28, May.
    6. Joana R. Gouveia & Sara M. Pinto & Sara Campos & João R. Matos & João Sobral & Sílvia Esteves & Luís Oliveira, 2022. "Life Cycle Assessment and Cost Analysis of Additive Manufacturing Repair Processes in the Mold Industry," Sustainability, MDPI, vol. 14(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5197-:d:801994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.