IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p4948-d797970.html
   My bibliography  Save this article

A Dynamic Analysis for Mitigating Disaster Effects in Closed Loop Supply Chains

Author

Listed:
  • Efthymios Katsoras

    (Industrial Management Division, Department of Mechanical Engineering, Aristotle University of Thessaloniki, P.O. Box 461, 541 24 Thessaloniki, Greece)

  • Patroklos Georgiadis

    (Industrial Management Division, Department of Mechanical Engineering, Aristotle University of Thessaloniki, P.O. Box 461, 541 24 Thessaloniki, Greece)

Abstract

The increased level of complexity in the case of Closed Loop Supply Chains (CLSCs) turns them into vulnerable systems under a disaster event. The latter calls for a methodological approach that allows a dynamic study under alternative policies in mitigating the disaster effects with a focus on creating sustainable CLSCs. For this reason, we provide a System Dynamics (SD)-based analysis for disaster events on the operation of CLSCs. By “disaster event”, we mean three different categories taking shape on the basis of duration. Furthermore, three different demand patterns emerging due to the disaster event are examined. We assume that the disaster event affects the manufacturer, and we examine the system response under different mitigation policies. For each demand pattern two different mitigation policies at the manufacturer level are examined by considering the total CLSC profit and demand backlog as measures of policy performance. For each combination, extensive simulation experimentation reveals sustainable policy recommendations under alternative settings regarding the reduction in the manufacturer’s production.

Suggested Citation

  • Efthymios Katsoras & Patroklos Georgiadis, 2022. "A Dynamic Analysis for Mitigating Disaster Effects in Closed Loop Supply Chains," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4948-:d:797970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/4948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/4948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jessica Olivares-Aguila & Waguih ElMaraghy, 2021. "System dynamics modelling for supply chain disruptions," International Journal of Production Research, Taylor & Francis Journals, vol. 59(6), pages 1757-1775, March.
    2. El Baz, Jamal & Ruel, Salomée, 2021. "Can supply chain risk management practices mitigate the disruption impacts on supply chains’ resilience and robustness? Evidence from an empirical survey in a COVID-19 outbreak era," International Journal of Production Economics, Elsevier, vol. 233(C).
    3. Simchi-Levi, David, 2010. "Operation Rules: Delivering Customer Value through Flexible Operations," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262525151, April.
    4. Chang, Mei-Shiang & Tseng, Ya-Ling & Chen, Jing-Wen, 2007. "A scenario planning approach for the flood emergency logistics preparation problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 737-754, November.
    5. Mahmud Akhter Shareef & Yogesh K. Dwivedi & Rafeed Mahmud & Angela Wright & Mohammad Mahboob Rahman & Hatice Kizgin & Nripendra P. Rana, 2019. "Disaster management in Bangladesh: developing an effective emergency supply chain network," Annals of Operations Research, Springer, vol. 283(1), pages 1463-1487, December.
    6. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    7. Georgiadis, Patroklos & Michaloudis, Charalampos, 2012. "Real-time production planning and control system for job-shop manufacturing: A system dynamics analysis," European Journal of Operational Research, Elsevier, vol. 216(1), pages 94-104.
    8. Martin Peterson, 2002. "The Limits of Catastrophe Aversion," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 527-538, June.
    9. Tang, Ou & Nurmaya Musa, S., 2011. "Identifying risk issues and research advancements in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 133(1), pages 25-34, September.
    10. Georgiadis, Patroklos & Athanasiou, Efstratios, 2013. "Flexible long-term capacity planning in closed-loop supply chains with remanufacturing," European Journal of Operational Research, Elsevier, vol. 225(1), pages 44-58.
    11. Wu, Y. & Zhang, D.Z., 2007. "Demand fluctuation and chaotic behaviour by interaction between customers and suppliers," International Journal of Production Economics, Elsevier, vol. 107(1), pages 250-259, May.
    12. Muhammad Umar & Mark Wilson, 2021. "Supply Chain Resilience: Unleashing the Power of Collaboration in Disaster Management," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    13. Qing Zhang & Weiguo Fan & Jianchang Lu & Siqian Wu & Xuechao Wang, 2021. "Research on Dynamic Analysis and Mitigation Strategies of Supply Chains under Different Disruption Risks," Sustainability, MDPI, vol. 13(5), pages 1-29, February.
    14. Patra, T. Devi Prasad & Jha, J.K., 2021. "A two-period newsvendor model for prepositioning with a post-disaster replenishment using Bayesian demand update," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    15. Li, Gang & Yang, Hongjiao & Sun, Linyan & Ji, Ping & Feng, Lei, 2010. "The evolutionary complexity of complex adaptive supply networks: A simulation and case study," International Journal of Production Economics, Elsevier, vol. 124(2), pages 310-330, April.
    16. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    17. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    18. Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
    19. Wilson, Martha C., 2007. "The impact of transportation disruptions on supply chain performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 295-320, July.
    20. Mahdi Bashiri & Benny Tjahjono & Jordon Lazell & Jennifer Ferreira & Tomy Perdana, 2021. "The Dynamics of Sustainability Risks in the Global Coffee Supply Chain: A Case of Indonesia–UK," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    21. Sterman, John D., 1989. "Misperceptions of feedback in dynamic decision making," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(3), pages 301-335, June.
    22. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    23. Ju Myung Song & Weiwei Chen & Lei Lei, 2018. "Supply chain flexibility and operations optimisation under demand uncertainty: a case in disaster relief," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3699-3713, May.
    24. Hwarng, H. Brian & Yuan, Xuchuan, 2014. "Interpreting supply chain dynamics: A quasi-chaos perspective," European Journal of Operational Research, Elsevier, vol. 233(3), pages 566-579.
    25. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    26. Braz, Antonio Carlos & Marotti de Mello, Adriana, 2022. "Circular economy supply network management: A complex adaptive system," International Journal of Production Economics, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Duan & Hengli Cao & Desheng Xu, 2023. "Research on the Impact of New Parts Price Increase on the Stability of Closed-Loop Supply Chain," Sustainability, MDPI, vol. 15(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katsoras, Efthymios & Georgiadis, Patroklos, 2022. "An integrated System Dynamics model for Closed Loop Supply Chains under disaster effects: The case of COVID-19," International Journal of Production Economics, Elsevier, vol. 253(C).
    2. Papanagnou, Christos & Seiler, Andreas & Spanaki, Konstantina & Papadopoulos, Thanos & Bourlakis, Michael, 2022. "Data-driven digital transformation for emergency situations: The case of the UK retail sector," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    5. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    6. Vasileios Kosmas & Michele Acciaro & Maria Besiou, 2022. "Saving migrants’ lives at sea: Improving search and rescue operations," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1872-1889, April.
    7. Qing Zhang & Weiguo Fan & Jianchang Lu & Siqian Wu & Xuechao Wang, 2021. "Research on Dynamic Analysis and Mitigation Strategies of Supply Chains under Different Disruption Risks," Sustainability, MDPI, vol. 13(5), pages 1-29, February.
    8. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    9. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    10. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    11. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    12. Rana Azghandi & Jacqueline Griffin & Mohammad S. Jalali, 2018. "Minimization of Drug Shortages in Pharmaceutical Supply Chains: A Simulation-Based Analysis of Drug Recall Patterns and Inventory Policies," Complexity, Hindawi, vol. 2018, pages 1-14, December.
    13. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).
    14. Shafiee, Mohammad & Zare-Mehrjerdi, Yahia & Govindan, Kannan & Dastgoshade, Sohaib, 2022. "A causality analysis of risks to perishable product supply chain networks during the COVID-19 outbreak era: An extended DEMATEL method under Pythagorean fuzzy environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    15. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    16. Ponte, Borja & Puche, Julio & Rosillo, Rafael & de la Fuente, David, 2020. "The effects of quantity discounts on supply chain performance: Looking through the Bullwhip lens," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    17. Qi, Mingyao & Yang, Ying & Cheng, Chun, 2023. "Location and inventory pre-positioning problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    18. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    19. Ekinci, Esra & Mangla, Sachin Kumar & Kazancoglu, Yigit & Sarma, P.R.S. & Sezer, Muruvvet Deniz & Ozbiltekin-Pala, Melisa, 2022. "Resilience and complexity measurement for energy efficient global supply chains in disruptive events," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    20. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4948-:d:797970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.