IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3525-d773239.html
   My bibliography  Save this article

Asphaltene or Polyvinylchloride Waste Blended with Cement to Produce a Sustainable Material Used in Nuclear Safety

Author

Listed:
  • Hosam M. Saleh

    (Radioisotope Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt)

  • Ibrahim I. Bondouk

    (Physics Department, Faculty of Science, University of Tanta, Tanta 31111, Egypt)

  • Elsayed Salama

    (Basic Science Department, Faculty of Engineering, The British University in Egypt (BUE), El Shorouk City 11837, Egypt)

  • Hazem H. Mahmoud

    (Radioisotope Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt)

  • Khalid Omar

    (Physics Department, Faculty of Science, University of Tanta, Tanta 31111, Egypt)

  • Heba A. Esawii

    (Basic Science Department, Faculty of Engineering, The British University in Egypt (BUE), El Shorouk City 11837, Egypt
    School of Science and Engineering, The American University in Cairo (AUC), Cairo 11835, Egypt)

Abstract

The current research uses sustainable methods to preserve the environment, such as exploiting municipal or industrial waste that may harm the environment. The wreckage of polyvinyl chloride (PVC) pipes and asphaltene are used as additives to cement to improve its mechanical properties, while stabilizing the radioactive waste resulting from the peaceful uses of nuclear materials, or enhancing its radiation shielding efficiency. New composites of Portland cement with ground PVC or asphaltene up to 50% are investigated. Fast neutron removal cross-section (Ʃ R ) and gamma shielding parameters, such as mass attenuation coefficient (MAC), half-value layer (HVL), effective atomic number ( Z eff ), and exposure build-up factor (EBF) at wide energy range and thickness, are determined. The compressive strength and apparent porosity of the examined composites are examined to test the durability of the prepared composites as stabilizers for radioactive waste. The obtained results show that the bulk density of hardened cementitious composites was slightly increased by increasing the additive amount of PVC or asphaltene. The compressive strength of cement composites reached more than 4.5 MP at 50 wt.% PVC and 8.8 MPa at 50 wt.% asphaltene. These values are significantly higher than those recommended by the US Nuclear Regulatory Commission (3.4 MPa). Additionally, the obtained results demonstrate that although the gamma MAC is slightly decreased by adding asphaltene or PVC, the neutron removal cross-section was highly increased, reaching 171% in the case of 50 wt.% asphaltene and 304% in the case of 50 wt.% PVC. We can conclude that cement composites with PVC or asphaltene have optimized radiation shielding properties and can stabilize radioactive waste.

Suggested Citation

  • Hosam M. Saleh & Ibrahim I. Bondouk & Elsayed Salama & Hazem H. Mahmoud & Khalid Omar & Heba A. Esawii, 2022. "Asphaltene or Polyvinylchloride Waste Blended with Cement to Produce a Sustainable Material Used in Nuclear Safety," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3525-:d:773239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3525/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abeer M. El-Sayed & Abeer A. Faheim & Aida A. Salman & Hosam M. Saleh, 2022. "Sustainable Lightweight Concrete Made of Cement Kiln Dust and Liquefied Polystyrene Foam Improved with Other Waste Additives," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    2. Hosam M. Saleh & Amal I. Hassan, 2023. "Synthesis and Characterization of Nanomaterials for Application in Cost-Effective Electrochemical Devices," Sustainability, MDPI, vol. 15(14), pages 1-52, July.
    3. Mohanad S. Eid & Ibrahim I. Bondouk & Hosam M. Saleh & Khaled M. Omar & Hassan M. Diab, 2022. "Investigating the Effect of Gamma and Neutron Irradiation on Portland Cement Provided with Waste Silicate Glass," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    4. Ahmad M. Abu Abdo & Hany El Naggar, 2022. "Evaluation of the Incorporation of Tire-Derived Aggregates (TDA) in Rigid Pavement Mix Designs," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    5. Ola Aziz & E. Salama & Doaa E. El-Nashar & Assem Bakry, 2023. "Development of Sustainable Radiation-Shielding Blend Using Natural Rubber/NBR, and Bismuth Filler," Sustainability, MDPI, vol. 15(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3525-:d:773239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.