IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11775-d919022.html
   My bibliography  Save this article

Evaluation of the Incorporation of Tire-Derived Aggregates (TDA) in Rigid Pavement Mix Designs

Author

Listed:
  • Ahmad M. Abu Abdo

    (Department of Civil Engineering, Liwa College of Technology, Abu Dhabi 51133, United Arab Emirates)

  • Hany El Naggar

    (Department of Civil & Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada)

Abstract

Owing to the extensive worldwide generation of solid wastes, such as rubber tires, and the resulting adverse environmental impacts, the incorporation of these waste materials in construction projects has become a widespread aim. However, concerns have arisen regarding the effects of rubber waste on the mechanical properties of Portland cement concrete (PCC) mixes. Thus, this study investigates the effects of replacing natural coarse aggregates with tire-derived aggregates (TDA). In PCC mixes, natural aggregates were replaced by 0, 10, 20, 40, 60, 80, and 100% TDA by volume, and the properties of these specimens were tested in the laboratory. The results obtained were then used as inputs for the KENPAVE software, to evaluate induced stresses, deflections, and cracking indices in rigid pavement slabs, with eleven different thicknesses, ranging from 200 to 300 mm in 10 mm increments. Stresses under different loading conditions decreased as PCC slab thickness and TDA content increased. Increased deflection and cracking indices resulting from adding TDA could be counteracted by increasing the PCC slab thickness by 10 mm. Moreover, environmental impacts and cost analyses were examined via PaLATE 2.0, which showed that the use of TDA could reduce energy consumption, harmful emissions, and material costs. Overall, this study indicates that the use of TDA in PCC mixes has benefits that can make it a good candidate for sustainable, ecofriendly rigid pavement construction projects.

Suggested Citation

  • Ahmad M. Abu Abdo & Hany El Naggar, 2022. "Evaluation of the Incorporation of Tire-Derived Aggregates (TDA) in Rigid Pavement Mix Designs," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11775-:d:919022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosam M. Saleh & Ibrahim I. Bondouk & Elsayed Salama & Hazem H. Mahmoud & Khalid Omar & Heba A. Esawii, 2022. "Asphaltene or Polyvinylchloride Waste Blended with Cement to Produce a Sustainable Material Used in Nuclear Safety," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohanad S. Eid & Ibrahim I. Bondouk & Hosam M. Saleh & Khaled M. Omar & Hassan M. Diab, 2022. "Investigating the Effect of Gamma and Neutron Irradiation on Portland Cement Provided with Waste Silicate Glass," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    2. Hosam M. Saleh & Amal I. Hassan, 2023. "Synthesis and Characterization of Nanomaterials for Application in Cost-Effective Electrochemical Devices," Sustainability, MDPI, vol. 15(14), pages 1-52, July.
    3. Ola Aziz & E. Salama & Doaa E. El-Nashar & Assem Bakry, 2023. "Development of Sustainable Radiation-Shielding Blend Using Natural Rubber/NBR, and Bismuth Filler," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    4. Abeer M. El-Sayed & Abeer A. Faheim & Aida A. Salman & Hosam M. Saleh, 2022. "Sustainable Lightweight Concrete Made of Cement Kiln Dust and Liquefied Polystyrene Foam Improved with Other Waste Additives," Sustainability, MDPI, vol. 14(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11775-:d:919022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.