Attention-Based Distributed Deep Learning Model for Air Quality Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jianxian Cai & Xun Dai & Li Hong & Zhitao Gao & Zhongchao Qiu, 2020. "An Air Quality Prediction Model Based on a Noise Reduction Self-Coding Deep Network," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, May.
- Axel Gedeon Mengara Mengara & Younghak Kim & Younghwan Yoo & Jaehun Ahn, 2020. "Distributed Deep Features Extraction Model for Air Quality Forecasting," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- María Inmaculada Rodríguez-García & María Gema Carrasco-García & Javier González-Enrique & Juan Jesús Ruiz-Aguilar & Ignacio J. Turias, 2023. "Long Short-Term Memory Approach for Short-Term Air Quality Forecasting in the Bay of Algeciras (Spain)," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan Huang & Junhao Yu & Xiaohong Dai & Zheng Huang & Yuanyuan Li, 2022. "Air-Quality Prediction Based on the EMD–IPSO–LSTM Combination Model," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
- Wenbing Chang & Xu Chen & Zhao He & Shenghan Zhou, 2023. "A Prediction Hybrid Framework for Air Quality Integrated with W-BiLSTM(PSO)-GRU and XGBoost Methods," Sustainability, MDPI, vol. 15(22), pages 1-24, November.
- Sang Won Choi & Brian H. S. Kim, 2021. "Applying PCA to Deep Learning Forecasting Models for Predicting PM 2.5," Sustainability, MDPI, vol. 13(7), pages 1-30, March.
- Xue-Bo Jin & Zhong-Yao Wang & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su & Hui-Jun Ma & Prasun Chakrabarti, 2023. "Variational Bayesian Network with Information Interpretability Filtering for Air Quality Forecasting," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
More about this item
Keywords
air quality forecasting; deep learning models; particle pollution; Busan metropolitan city; data parallelism architecture;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3269-:d:768674. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.