IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3269-d768674.html
   My bibliography  Save this article

Attention-Based Distributed Deep Learning Model for Air Quality Forecasting

Author

Listed:
  • Axel Gedeon Mengara Mengara

    (School of Computer Science and Engineering, Pusan National University, Busan 46241, Korea)

  • Eunyoung Park

    (School of Computer Science and Engineering, Pusan National University, Busan 46241, Korea)

  • Jinho Jang

    (School of Computer Science and Engineering, Pusan National University, Busan 46241, Korea)

  • Younghwan Yoo

    (School of Computer Science and Engineering, Pusan National University, Busan 46241, Korea)

Abstract

Air quality forecasting has become an essential factor in facilitating sustainable development worldwide. Several countries have implemented monitoring stations to collect air pollution particle data and meteorological information using parameters such as hourly timespans. This research focuses on unravelling a new framework for air quality prediction worldwide and features Busan, South Korea as its model city. The paper proposes the application of an attention-based convolutional BiLSTM autoencoder model. The proposed deep learning model has been trained on a distributed framework, referred to data parallelism, to forecast the intensity of particle pollution ( P M 2.5 and P M 10 ). The algorithm automatically learns the intrinsic correlation among the particle pollution in different locations. Each location’s meteorological and traffic data is extensively exploited to improve the model’s performance. The model has been trained using air quality particle data and car traffic information. The traffic information is obtained by a device which counts cars passing a specific area through the YOLO algorithm, and then sends the data to a stacked deep autoencoder to be encoded alongside the meteorological data before the final prediction. In addition, multiple one-dimensional CNN layers are used to obtain the local spatial features jointly with a stacked attention-based BiLSTM layer to figure out how air quality particles are correlated in space and time. The evaluation of the new attention-based convolutional BiLSTM autoencoder model was derived from data collected and retrieved from comprehensive experiments conducted in South Korea. The results not only show that the framework outperforms the previous models both on short- and long-term predictions but also indicate that traffic information can improve the accuracy of air quality forecasting. For instance, during P M 2.5 prediction, the proposed attention-based model obtained the lowest MAE (5.02 and 22.59, respectively, for short-term and long-term prediction), RMSE (7.48 and 28.02) and SMAPE (17.98 and 39.81) among all the models, which indicates strong accuracy between observed and predicted values. It was also found that the newly proposed model had the lowest average training time compared to the baseline algorithms. Furthermore, the proposed framework was successfully deployed in a cloud server in order to provide future air quality information in real time and when needed.

Suggested Citation

  • Axel Gedeon Mengara Mengara & Eunyoung Park & Jinho Jang & Younghwan Yoo, 2022. "Attention-Based Distributed Deep Learning Model for Air Quality Forecasting," Sustainability, MDPI, vol. 14(6), pages 1-34, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3269-:d:768674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianxian Cai & Xun Dai & Li Hong & Zhitao Gao & Zhongchao Qiu, 2020. "An Air Quality Prediction Model Based on a Noise Reduction Self-Coding Deep Network," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, May.
    2. Axel Gedeon Mengara Mengara & Younghak Kim & Younghwan Yoo & Jaehun Ahn, 2020. "Distributed Deep Features Extraction Model for Air Quality Forecasting," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Inmaculada Rodríguez-García & María Gema Carrasco-García & Javier González-Enrique & Juan Jesús Ruiz-Aguilar & Ignacio J. Turias, 2023. "Long Short-Term Memory Approach for Short-Term Air Quality Forecasting in the Bay of Algeciras (Spain)," Sustainability, MDPI, vol. 15(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Huang & Junhao Yu & Xiaohong Dai & Zheng Huang & Yuanyuan Li, 2022. "Air-Quality Prediction Based on the EMD–IPSO–LSTM Combination Model," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    2. Wenbing Chang & Xu Chen & Zhao He & Shenghan Zhou, 2023. "A Prediction Hybrid Framework for Air Quality Integrated with W-BiLSTM(PSO)-GRU and XGBoost Methods," Sustainability, MDPI, vol. 15(22), pages 1-24, November.
    3. Sang Won Choi & Brian H. S. Kim, 2021. "Applying PCA to Deep Learning Forecasting Models for Predicting PM 2.5," Sustainability, MDPI, vol. 13(7), pages 1-30, March.
    4. Xue-Bo Jin & Zhong-Yao Wang & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su & Hui-Jun Ma & Prasun Chakrabarti, 2023. "Variational Bayesian Network with Information Interpretability Filtering for Air Quality Forecasting," Mathematics, MDPI, vol. 11(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3269-:d:768674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.