IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p8014-d420867.html
   My bibliography  Save this article

Distributed Deep Features Extraction Model for Air Quality Forecasting

Author

Listed:
  • Axel Gedeon Mengara Mengara

    (School of Computer Science and Engineering, Pusan National University, Busan 46241, Korea)

  • Younghak Kim

    (School of Computer Science and Engineering, Pusan National University, Busan 46241, Korea)

  • Younghwan Yoo

    (School of Computer Science and Engineering, Pusan National University, Busan 46241, Korea)

  • Jaehun Ahn

    (School of Urban, Architecture and Civil Engineering, Pusan National University, Busan 46241, Korea)

Abstract

Several studies in environmental engineering emphasize the importance of air quality forecasting for sustainable development around the world. In this paper, we studied a new approach for air quality forecasting in Busan metropolitan city. We proposed a convolutional Bi-Directional Long-Short Term Memory (Bi-LSTM) autoencoder model trained using a distributed architecture to predict the concentration of the air quality particles ( PM 2.5 and PM 10 ). The proposed deep learning model can automatically learn the intrinsic correlation among the pollutants in different location. Also, the meteorological and the pollution gas information at each location are fully utilized, which is beneficial for the performance of the model. We used multiple one-dimension convolutional neural network (CNN) layers to extract the local spatial features and a stacked Bi-LSTM layer to learn the spatiotemporal correlation of air quality particles. In addition, we used a stacked deep autoencoder to encode the essential transformation patterns of the pollution gas and the meteorological data, since they are very important for providing useful information that can significantly improve the prediction of the air quality particles. Finally, in order to reduce the training time and the resource consumption, we used a distributed deep leaning approach called data parallelism , which has never been used to tackle the problem of air quality forecasting. We evaluated our approach with extensive experiments based on the data collected in Busan metropolitan city. The results reveal the superiority of our framework over ten baseline models and display how the distributed deep learning model can significantly improve the training time and even the prediction accuracy.

Suggested Citation

  • Axel Gedeon Mengara Mengara & Younghak Kim & Younghwan Yoo & Jaehun Ahn, 2020. "Distributed Deep Features Extraction Model for Air Quality Forecasting," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8014-:d:420867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/8014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/8014/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sang Won Choi & Brian H. S. Kim, 2021. "Applying PCA to Deep Learning Forecasting Models for Predicting PM 2.5," Sustainability, MDPI, vol. 13(7), pages 1-30, March.
    2. Axel Gedeon Mengara Mengara & Eunyoung Park & Jinho Jang & Younghwan Yoo, 2022. "Attention-Based Distributed Deep Learning Model for Air Quality Forecasting," Sustainability, MDPI, vol. 14(6), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8014-:d:420867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.