IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p3028-d764576.html
   My bibliography  Save this article

Evaluation of the Techno-Economic Feasibility for Excavated Soil Recycling in Shenzhen, China

Author

Listed:
  • Tong Huang

    (Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150086, China
    Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China)

  • Shicong Kou

    (Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China)

  • Deyou Liu

    (Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China)

  • Dawang Li

    (Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China)

  • Feng Xing

    (Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150086, China
    Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China)

Abstract

The existing recycling chain of construction and demolition waste generally considers soil inert solid waste to be sent to landfills. As the most significant component of C&D (construction and demolition) waste, excavated soil occupies approximately half of landfills. Currently, excavated soil is a big issue in China’s Pearl River Delta. This paper investigated the composition and quantity of excavated soil in Shenzhen, China. In particular, the potential market demand for critical recycled sand (a key recycled material extracted from the excavated soil) was estimated. Furthermore, the technical analysis for excavated soil recycling takes an entire excavated soil recycling process’s perspective, delving into the process flow for the excavated soil and the recycled sand’s physicomechanical properties. Then, two mainstream and legitimate models of excavated soil recycling were considered: stationary plant recycling and on-site recycling. Each model’s financial and economic viability was assessed. The financial analysis focuses on investors’ perspectives, whose primary goal is to assess their investment profitability. The economic feasibility of the excavated soil stationary plant recycling and on-site recycling models in Shenzhen were then compared via benefit and cost analysis during the lifetime of the recycling equipment. A comprehensive, complete cost calculation and investment analysis revealed that Shenzhen’s excavated soil recycling business is profitable under the current market conditions. This study investigates scaled and effective excavated soil recycling and gives a technically and economically viable reference to the global excavated soil issue.

Suggested Citation

  • Tong Huang & Shicong Kou & Deyou Liu & Dawang Li & Feng Xing, 2022. "Evaluation of the Techno-Economic Feasibility for Excavated Soil Recycling in Shenzhen, China," Sustainability, MDPI, vol. 14(5), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3028-:d:764576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/3028/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/3028/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristina IACOBOAEA & Mihaela ALDEA & Florian PETRESCU, 2019. "Construction And Demolition Waste - A Challenge For The European Union?," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 14(1), pages 30-52, February.
    2. Duan, Huabo & Wang, Jiayuan & Huang, Qifei, 2015. "Encouraging the environmentally sound management of C&D waste in China: An integrative review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 611-620.
    3. Duran, Xavier & Lenihan, Helena & O’Regan, Bernadette, 2006. "A model for assessing the economic viability of construction and demolition waste recycling—the case of Ireland," Resources, Conservation & Recycling, Elsevier, vol. 46(3), pages 302-320.
    4. Chun-Li Peng & Domenic Scorpio & Charles Kibert, 1997. "Strategies for successful construction and demolition waste recycling operations," Construction Management and Economics, Taylor & Francis Journals, vol. 15(1), pages 49-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongchen Han & Mohsen Kalantari & Abbas Rajabifard, 2021. "Building Information Modeling (BIM) for Construction and Demolition Waste Management in Australia: A Research Agenda," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    2. Yuan, H.P. & Shen, L.Y. & Hao, Jane J.L. & Lu, W.S., 2011. "A model for cost–benefit analysis of construction and demolition waste management throughout the waste chain," Resources, Conservation & Recycling, Elsevier, vol. 55(6), pages 604-612.
    3. Lu, Weisheng & Yuan, Hongping, 2010. "Exploring critical success factors for waste management in construction projects of China," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 201-208.
    4. Ajayi, Saheed O. & Oyedele, Lukumon O. & Bilal, Muhammad & Akinade, Olugbenga O. & Alaka, Hafiz A. & Owolabi, Hakeem A. & Kadiri, Kabir O., 2015. "Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 101-112.
    5. Peiyang Su & Ying Peng & Qidan Hu & Ruwen Tan, 2020. "Incentive Mechanism and Subsidy Design for Construction and Demolition Waste Recycling under Information Asymmetry with Reciprocal Behaviors," IJERPH, MDPI, vol. 17(12), pages 1-26, June.
    6. Farel, Romain & Yannou, Bernard & Ghaffari, Asma & Leroy, Yann, 2013. "A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: A systematic approach," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 54-65.
    7. Abbate, Stefano & Centobelli, Piera & Cerchione, Roberto, 2023. "From Fast to Slow: An Exploratory Analysis of Circular Business Models in the Italian Apparel Industry," International Journal of Production Economics, Elsevier, vol. 260(C).
    8. Udawatta, Nilupa & Zuo, Jian & Chiveralls, Keri & Zillante, George, 2015. "Improving waste management in construction projects: An Australian study," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 73-83.
    9. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.
    10. Madduma Kaluge Chamitha Sanjani Wijewickrama & Nicholas Chileshe & Raufdeen Rameezdeen & Jose Jorge Ochoa, 2021. "Minimizing Macro-Level Uncertainties for Quality Assurance in Reverse Logistics Supply Chains of Demolition Waste," Sustainability, MDPI, vol. 13(23), pages 1-35, November.
    11. Begum, Rawshan Ara & Siwar, Chamhuri & Pereira, Joy Jacqueline & Jaafar, Abdul Hamid, 2006. "A benefit–cost analysis on the economic feasibility of construction waste minimisation: The case of Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 48(1), pages 86-98.
    12. Knoeri, Christof & Binder, Claudia R. & Althaus, Hans-Joerg, 2011. "Decisions on recycling: Construction stakeholders’ decisions regarding recycled mineral construction materials," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1039-1050.
    13. Sajjad Pourkhorshidi & Cesare Sangiorgi & Daniele Torreggiani & Patrizia Tassinari, 2020. "Using Recycled Aggregates from Construction and Demolition Waste in Unbound Layers of Pavements," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    14. Lu, Weisheng & Webster, Chris & Chen, Ke & Zhang, Xiaoling & Chen, Xi, 2017. "Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 587-595.
    15. Animesh Ghosh & Prabha Bhola & Uthayasankar Sivarajah, 2022. "Emerging Associates of the Circular Economy: Analysing Interactions and Trends by a Mixed Methods Systematic Review," Sustainability, MDPI, vol. 14(16), pages 1-41, August.
    16. Luara Batalha Vieira & Vito Francioso & Bruna Bueno Mariani & Carlos Moro & Josiane Dantas Viana Barbosa & Larissa da Silva Paes Cardoso & Cleber Marcos Ribeiro Dias & Mirian Velay-Lizancos, 2023. "Valorization of Marble Waste Powder as a Replacement for Limestone in Clinker Production: Technical, Environmental and Economic Evaluation," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    17. Zhao, W. & Ren, H. & Rotter, V.S., 2011. "A system dynamics model for evaluating the alternative of type in construction and demolition waste recycling center – The case of Chongqing, China," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 933-944.
    18. Zhao, W. & Leeftink, R.B. & Rotter, V.S., 2010. "Evaluation of the economic feasibility for the recycling of construction and demolition waste in China—The case of Chongqing," Resources, Conservation & Recycling, Elsevier, vol. 54(6), pages 377-389.
    19. Haoxuan Zheng & Xingwei Li & Xiaowen Zhu & Yicheng Huang & Zhili Liu & Yuxin Liu & Jiaxin Liu & Xiangye Li & Yuejia Li & Chunhui Li, 2022. "Impact of Recycler Information Sharing on Supply Chain Performance of Construction and Demolition Waste Resource Utilization," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
    20. Cristian Silviu BANACU & Vasile ZECHERU & Bianca Georgiana OLARU, 2016. "Project Management In Organic Waste Recycling," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 10(1), pages 101-106, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:3028-:d:764576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.