Predicting Demand for Shared E-Scooter Using Community Structure and Deep Learning Method
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Meftah Elsaraiti & Adel Merabet, 2021. "A Comparative Analysis of the ARIMA and LSTM Predictive Models and Their Effectiveness for Predicting Wind Speed," Energies, MDPI, vol. 14(20), pages 1-16, October.
- Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2021. "When, What and How to Teach about Electric Mobility? An Innovative Teaching Concept for All Stages of Education: Lessons from Poland," Energies, MDPI, vol. 14(19), pages 1-16, October.
- Yajun Zhou & Lilei Wang & Rong Zhong & Yulong Tan, 2018. "A Markov Chain Based Demand Prediction Model for Stations in Bike Sharing Systems," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-8, January.
- Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
- McKenzie, Grant, 2019. "Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, D.C," Journal of Transport Geography, Elsevier, vol. 78(C), pages 19-28.
- Gabriel Dias & Elisabete Arsenio & Paulo Ribeiro, 2021. "The Role of Shared E-Scooter Systems in Urban Sustainability and Resilience during the Covid-19 Mobility Restrictions," Sustainability, MDPI, vol. 13(13), pages 1-19, June.
- Owain James & J I Swiderski & John Hicks & Denis Teoman & Ralph Buehler, 2019. "Pedestrians and E-Scooters: An Initial Look at E-Scooter Parking and Perceptions by Riders and Non-Riders," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
- Tiziana Campisi & Anastasios Skoufas & Alexandros Kaltsidis & Socrates Basbas, 2021. "Gender Equality and E-Scooters: Mind the Gap! A Statistical Analysis of the Sicily Region, Italy," Social Sciences, MDPI, vol. 10(10), pages 1-24, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Antonio A. Barreda-Luna & Juvenal Rodríguez-Reséndiz & Alejandro Flores Rangel & Omar Rodríguez-Abreo, 2022. "Neural Network and Spatial Model to Estimate Sustainable Transport Demand in an Extensive Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
- Hakan İnaç, 2023. "Micro-Mobility Sharing System Accident Case Analysis by Statistical Machine Learning Algorithms," Sustainability, MDPI, vol. 15(3), pages 1-31, January.
- Songhyeon Shin & Sangho Choo, 2022. "Influence of Built Environment on Micromobility–Pedestrian Accidents," Sustainability, MDPI, vol. 15(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexandra König & Laura Gebhardt & Kerstin Stark & Julia Schuppan, 2022. "A Multi-Perspective Assessment of the Introduction of E-Scooter Sharing in Germany," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
- Georgia Ayfantopoulou & Josep Maria Salanova Grau & Zisis Maleas & Alexandros Siomos, 2022. "Micro-Mobility User Pattern Analysis and Station Location in Thessaloniki," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
- Cao, Zhejing & Zhang, Xiaohu & Chua, Kelman & Yu, Honghai & Zhao, Jinhua, 2021. "E-scooter sharing to serve short-distance transit trips: A Singapore case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 177-196.
- Tim De Ceunynck & Gert Jan Wijlhuizen & Aslak Fyhri & Regine Gerike & Dagmar Köhler & Alice Ciccone & Atze Dijkstra & Emmanuelle Dupont & Mario Cools, 2021. "Assessing the Willingness to Use Personal e-Transporters (PeTs): Results from a Cross-National Survey in Nine European Cities," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
- Tiziana Campisi & Anastasios Skoufas & Alexandros Kaltsidis & Socrates Basbas, 2021. "Gender Equality and E-Scooters: Mind the Gap! A Statistical Analysis of the Sicily Region, Italy," Social Sciences, MDPI, vol. 10(10), pages 1-24, October.
- Kim, Minju & Puczkowskyj, Nicholas & MacArthur, John & Dill, Jennifer, 2023. "Perspectives on e-scooters use: A multi-year cross-sectional approach to understanding e-scooter travel behavior in Portland, Oregon," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
- Samadzad, Mahdi & Nosratzadeh, Hossein & Karami, Hossein & Karami, Ali, 2023. "What are the factors affecting the adoption and use of electric scooter sharing systems from the end user's perspective?," Transport Policy, Elsevier, vol. 136(C), pages 70-82.
- Fitt, Helen & Curl, Angela, 2020. "The early days of shared micromobility: A social practices approach," Journal of Transport Geography, Elsevier, vol. 86(C).
- Samira Dibaj & Aryan Hosseinzadeh & Miloš N. Mladenović & Robert Kluger, 2021. "Where Have Shared E-Scooters Taken Us So Far? A Review of Mobility Patterns, Usage Frequency, and Personas," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
- Alberica Domitilla Bozzi & Anne Aguilera, 2021. "Shared E-Scooters: A Review of Uses, Health and Environmental Impacts, and Policy Implications of a New Micro-Mobility Service," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
- Stefania Boglietti & Benedetto Barabino & Giulio Maternini, 2021. "Survey on e-Powered Micro Personal Mobility Vehicles: Exploring Current Issues towards Future Developments," Sustainability, MDPI, vol. 13(7), pages 1-34, March.
- Ecer, Fatih & Küçükönder, Hande & Kayapınar Kaya, Sema & Faruk Görçün, Ömer, 2023. "Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
- Bretones, Alexandra & Marquet, Oriol, 2022. "Sociopsychological factors associated with the adoption and usage of electric micromobility. A literature review," Transport Policy, Elsevier, vol. 127(C), pages 230-249.
- Maximilian Heumann & Tobias Kraschewski & Tim Brauner & Lukas Tilch & Michael H. Breitner, 2021. "A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
- Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
- Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
- Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
- Shah, Nitesh R. & Ziedan, Abubakr & Brakewood, Candace & Cherry, Christopher R., 2023. "Shared e-scooter service providers with large fleet size have a competitive advantage: Findings from e-scooter demand and supply analysis of Nashville, Tennessee," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
- Jo, Hang-Hyun & Moon, Eunyoung, 2016. "Dynamical complexity in the perception-based network formation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 282-292.
- Yu, Shuo & Alqahtani, Fayez & Tolba, Amr & Lee, Ivan & Jia, Tao & Xia, Feng, 2022. "Collaborative Team Recognition: A Core Plus Extension Structure," Journal of Informetrics, Elsevier, vol. 16(4).
More about this item
Keywords
shared e-scooter; spatial clustering; community structure; demand prediction model; long short-term memory (LSTM);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2564-:d:756531. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.